resentation for sembanking. In Proceedings of 7th
Linguistic Annotation Workshop and Interoperability
with Discourse, pages 178–186.
Borsotti, A., Breveglieri, L., Reghizzi, S. C., and Morzenti,
A. (2021). A deterministic parsing algorithm for
ambiguous regular expressions. Acta Informatica,
58(3):195–229.
Bose, R., Vashishtha, S., and Allen, J. (2020). Improving
semantic parsing using statistical word sense disam-
biguation. In Proceedings of 34th AAAI Conference
on Artificial Intelligence, pages 13757–13758.
Botana, F., Hohenwarter, M., Janicic, P., Kovacs, Z., Petro-
vic, I., Recio, T., and Weitzhofer, S. (2015). Auto-
mated theorem proving in geogebra: Current achieve-
ments. Journal of Automated Reasonig, 55(1):39–59.
Casillas-Perez, D., Pizarro, D., Fuentes-Jimenez, D., Mazo,
M., and Bartoli, A. (2021). The isowarp: The
template-based visual geometry of isometric sur-
faces. International Journal of Computer Vision,
129(7):2194–2222.
Chen, Y. and Huo, Y. (2021). Limitation of acyclic ori-
ented graphs matching as cell tracking accuracy mea-
sure when evaluating mitosis. Progress in Biomedical
Optics and Imaging, 21.
Czibula, G., Czibula, I., and Gaceanu, R. (2013). Intelli-
gent data structures selection using neural networks.
Knowledge and Information Systems, 34(1):171–192.
Du, J., Yu, P., and Li., X. (2020). Machine’s statistical pars-
ing and human’s cognitive preference for garden path
sentences. Advances in Intelligent Systems and Com-
puting, 1152:264–271.
Gan, W., Yu, X., and Wang, M. (2019). Automatic under-
standing and formalization of plane geometry proving
problems in natural language: A supervised approach.
International Journal on Artificial Intelligence Tools,
28.
Hershcovich, D., Abend, O., and Rapport, A. (2017).
A transition-based directed acyclic graph parser for
ucca. In Proceedings of Annual Meeting of the As-
sociation for Computational Linguistics, pages 1127–
1138.
Hershcovich, D. and Arviv, O. (2019). Tupa at mrp 2019: A
multi-task baseline system. In Proceedings of Confer-
ence on Computational Natural Language Learning,
pages 28–39.
Hunt, J. (2019). Introduction to matplotlib. Advanced Guide
to Python 3 Programming, 5:35–42.
Iordan, A., Panoiu, M., Baciu, I., and Cuntan, C. (2010).
Modelling using uml diagrams of an intelligent sys-
tem for the automatic demonstration of geometry the-
orems. Wseas Transactions on Computers, 9(9):949–
959.
Iordan, A., Panoiu, M., Muscalagiu, I., , and Rob, R. (2009).
Realization of an interactive informatical system for
the quadric surfaces study. In Proceedings of 13th
International Conference on Computers, pages 205–
210.
Iordan, A. E. (2021). Automatic comprehension of geom-
etry problems using amr parser. In Proceedings of
33rd International Conference on Software Engineer-
ing and Knowledge Engineering, pages 628–631.
Jain, S., Jain, A., and Singh, S. (2021). Building a ma-
chine learning model for unstructured text classifica-
tion: Towards hybrid approach. Advances in Intelli-
gent Systems and Computing, 1187:447–454.
Jayasinghe, I. and Ranathunga, S. (2020). Two-step mem-
ory networks for deep semantic parsing of geometry
word problems. Lecture Notes in Computer Science,
12011:676–685.
Jha, A., Ruwali, A., Prakash, K., and Kanagachidambare-
san, G. (2021). Tensorflow basics. EAI/Springer Inno-
vations in Communication and Computing, 11:5–13.
Kottur, S., Mourra, J., Parikh, D., Batra, D., and Rohrbach,
M. (2018). Visual coreference resolution in visual di-
alog using neural module networks. Lecture Notes in
Computer Science, 11219:160–178.
Laghrissi, F., Douzi, S., Douzi, K., and Hssina, B. (2021).
Intrusion detection systems using long short-term
memory (lstm). Journal of Big Data, 8(1).
Liu, Y., Li, G., , and Zhang, X. (2020). Semi-markov crf
model based on stacked neural bi-lstm for sequence
labeling. In Proceedings of IEEE 3rd International
Conference of Safe Production and Informatization,
pages 19–23.
Muscalagiu, I., Popa, H., and Negru, V. (2015). Improving
the performances of asynchronous search algorithms
in scale-free networks using the nogood processor
technique. Computing and Informatics, 34(1):254–
274.
Nadkarni, P., Ohno-Machado, L., and Chapman, W. (2011).
Natural language processing: an introduction. Journal
of the American Informatics Association, 18(5):544–
551.
Poon, H. K., Yap, W. S., Tee, Y. K., Lee, W. K., and Goi, B.
(2019). Hierarchical gated recurrent network with ad-
versarial and virtual adversarial training on text clas-
sification. Neural Networks, 119:299–312.
Quaresma, P., Santos, V., Graziani, P., and Baeta, N. (2020).
Taxonomies of geometric problems. Journal of Sym-
bolic Computation, 97:31–55.
Seo, M., Hajishirzi, H., Farhadi, A., Etzioni, O., and Mal-
colm, C. (2015). Solving geometry problems: Com-
bining text and diagram interpretation. In Proceedings
of Empirical Methods in Natural Language Process-
ing, pages 1466–14768.
Viani, N., Botelle, R., Kerwin, J., Yin, L., Patel, R., Stew-
art, R., and Velupillai, S. (2021). A natural language
processing approach for identifying temporal disease
onset information from mental healthcare text. Scien-
tific Reports, 11(1).
Wang, K. and Su, Z. (2015). Automated geometry theorem
proving for human readable proofs. In Proceedings
of International Conference on Artificial Intelligence,
pages 1193–1199.
Yang, K. and Deng, J. (2020). Strongly incremental con-
stituency parsing with graph neural networks. Ad-
vances in Neural Information Processing Systems, 20.