On downfall, if this kind of problem is tackled
with machine learning, is that it needs a lot of data to
train, in Peru and in general, many times there is not
enough (available) data. In contrast, CP works to find
solutions from the data set that must respect given re-
strictions, optimizing an objective function with sim-
ple heuristics, without training or a lot of data.
As a future work, we would like to scale our ap-
proach, with more instances, or evenmore with new
constraints that appear on the fly, for instance now
some countries have a booster shots policies, that re-
quire to rethink some of the constraints, such as Dy-
namic CSPs (Verfaillie and Schiex, 1994)
REFERENCES
Aringhieri, R., Landa, P., Soriano, P., Tanfani, E., and Testi,
A. (2015). A two level metaheuristic for the operating
room scheduling and assignment problem. Comput.
Oper. Res., 54.
Bakker, M., Riezebos, J., and Teunter, R. H. (2012). Review
of inventory systems with deterioration since 2001.
Eur. J. Oper. Res., 221(2).
Ben Bachouch, R., Guinet, A., and Hajri-Gabouj, S. (2012).
An integer linear model for hospital bed planning. In-
ternational Journal of Production Economics, 140(2).
Bistarelli, S., Montanari, U., and Rossi, F. (1995). Con-
straint solving over semirings. In IJCAI.
Cardoen, B., Demeulemeester, E., and Beli
¨
en, J. (2010).
Operating room planning and scheduling: A literature
review. Eur. J. Oper. Res., 201(3).
Carniel, A., Leme, G., Bezerra, J., and Hirata, C. (2021). A
blockchain approach to support vaccination process in
a country. In ICEIS.
Chen, D., Deng, Y., Chen, Z., He, Z., and Zhang, W. (2020).
A hybrid tree-based algorithm to solve asymmetric
distributed constraint optimization problems. Auton.
Agents Multi Agent Syst., 34(2).
Chick, S. E., Mamani, H., and Simchi-Levi, D. (2008).
Supply chain coordination and influenza vaccination.
Oper. Res., 56(6).
Cooper, M. C., de Givry, S., S
´
anchez-Fibla, M., Schiex, T.,
Zytnicki, M., and Werner, T. (2010). Soft arc consis-
tency revisited. Artif. Intell., 174(7-8).
Dai, T., Cho, S.-H., and Zhang, F. (2012). Contracting for
on-time delivery in the u.s. influenza vaccine supply
chain. SSRN Electronic Journal, 18.
Demeester, P., Souffriau, W., Causmaecker, P. D., and
Berghe, G. V. (2010). A hybrid tabu search algorithm
for automatically assigning patients to beds. Artif. In-
tell. Medicine, 48(1).
Duijzer, L. E., van Jaarsveld, W., and Dekker, R. (2018).
Literature review: The vaccine supply chain. Eur. J.
Oper. Res., 268(1).
Goyal, S. K. and Giri, B. C. (2001). Recent trends in mod-
eling of deteriorating inventory. Eur. J. Oper. Res.,
134(1).
Gregor, M., Hrubo
ˇ
s, M., and Nemec, D. (2018). A com-
parative analysis of constraint programming and meta-
heuristics for job-shop scheduling. In KI.
Hovav, S. and Tsadikovich, D. (2015). A network flow
model for inventory management and distribution of
influenza vaccines through a healthcare supply chain.
Operations Research for Health Care, 5.
Li, R. (2010). A review on deteriorating inventory study.
Journal of Service Science and Management, 03.
Manlove, D. F., McBride, I., and Trimble, J. (2017).
”almost-stable” matchings in the hospitals / residents
problem with couples. Constraints An Int. J., 22(1).
Marynissen, J. and Demeulemeester, E. (2019). Literature
review on multi-appointment scheduling problems in
hospitals. Eur. J. Oper. Res., 272(2).
Mofrad, M., Maillart, L., Norman, B., and Rajgopal, J.
(2014). Dynamically optimizing the administration
of vaccines from multi-dose vials. IIE Transactions
(Institute of Industrial Engineers).
Mofrad, M. H., Garcia, G.-G. P., Maillart, L. M., Norman,
B. A., and Rajgopal, J. (2016). Customizing immu-
nization clinic operations to minimize open vial waste.
Socio-Economic Planning Sciences, 54.
Nasrabadi, A. M., Najafi, M., and Zolfagharinia, H. (2020).
Considering short-term and long-term uncertainties in
location and capacity planning of public healthcare fa-
cilities. Eur. J. Oper. Res., 281(1).
Rossi, F., van Beek, P., and Walsh, T., editors (2006). Hand-
book of Constraint Programming, volume 2 of Foun-
dations of Artificial Intelligence. Elsevier.
Turhan, A. M. and Bilgen, B. (2017). Mixed integer pro-
gramming based heuristics for the patient admission
scheduling problem. Comput. Oper. Res., 80.
Ugarte, W. (2020). Constraint programming for the pan-
demic in peru. In ICAT.
Verfaillie, G. and Schiex, T. (1994). Solution reuse in dy-
namic constraint satisfaction problems. In AAAI.
Vermeulen, I. B., Bohte, S. M., Elkhuizen, S. G., Lameris,
H., Bakker, P. J. M., and Poutr
´
e, H. L. (2009). Adap-
tive resource allocation for efficient patient schedul-
ing. Artif. Intell. Medicine, 46(1).
Westerink-Duijzer, L., Jaarsveld, W., Wallinga, J., and
Dekker, R. (2017). Dose-optimal vaccine allocation
over multiple populations. Production and Operations
Management, 27.
Westerink-Duijzer, L. E., Schlicher, L. P. J., and Musegaas,
M. (2020). Core Allocations for Cooperation Prob-
lems in Vaccination. Production and Operations Man-
agement, 29(7).
ICAART 2022 - 14th International Conference on Agents and Artificial Intelligence
764