Generating High Resolution Depth Image from Low Resolution LiDAR Data using RGB Image

Kento Yamakawa, Fumihiko Sakaue, Jun Sato

2022

Abstract

In this paper, we propose a GAN that generates a high-resolution depth image from a low-resolution depth image obtained from low-resolution LiDAR. Our method uses a high-resolution RGB image as a guide image, and generate high-resolution depth image from low-resolution depth image efficiently by using GAN. The results of the qualitative and quantitative evaluation show the effectiveness of the proposed method.

Download


Paper Citation


in Harvard Style

Yamakawa K., Sakaue F. and Sato J. (2022). Generating High Resolution Depth Image from Low Resolution LiDAR Data using RGB Image. In Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2022) - Volume 4: VISAPP; ISBN 978-989-758-555-5, SciTePress, pages 659-665. DOI: 10.5220/0010903900003124


in Bibtex Style

@conference{visapp22,
author={Kento Yamakawa and Fumihiko Sakaue and Jun Sato},
title={Generating High Resolution Depth Image from Low Resolution LiDAR Data using RGB Image},
booktitle={Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2022) - Volume 4: VISAPP},
year={2022},
pages={659-665},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0010903900003124},
isbn={978-989-758-555-5},
}


in EndNote Style

TY - CONF

JO - Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2022) - Volume 4: VISAPP
TI - Generating High Resolution Depth Image from Low Resolution LiDAR Data using RGB Image
SN - 978-989-758-555-5
AU - Yamakawa K.
AU - Sakaue F.
AU - Sato J.
PY - 2022
SP - 659
EP - 665
DO - 10.5220/0010903900003124
PB - SciTePress