Hu, P. and Ramanan, D. (2017). Finding tiny faces. In Pro-
ceedings of Computer Vision and Pattern Recognition,
pages 951–959, Hawai, USA. IEEE.
Jain, V. and Learned-Miller., E. (2010). FDDB: A
benchmark for face detection in unconstrained set-
tings. Technical report, University of Massachusetts,
Amherst.
Kamlesh, P. X., Yang, Y., and Xu, Y. (2017). Person re-
identification with end-to-end scene text recognition.
In Chinese Conference on Computer Vision, pages
363–374, Tianjin, China. Springer.
Kazemi, V. and Sullivan, J. (2014). One millisecond face
alignment with an ensemble of regression trees. In
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1867–1874, Columbus,
OH, USA. IEEE.
King, D. E. (2009). Dlib-ml: A machine learning toolkit.
Journal of Machine Learning Research, 10:1755–
1758.
Li, G. and Zhang, C. (2019). Automatic detection tech-
nology of sports athletes based on image recognition
technology. EURASIP Journal on Image and Video
Processing, 2019(1):15.
Luo, H., Jiang, W., Zhang, X., Fan, X., Qian, J., and Zhang,
C. (2019). AlignedReID++: Dynamically matching
local information for person re-identification. Pattern
Recognition, 94:53 – 61.
Minghui Liao, B. S. and Bai, X. (2018). TextBoxes++: A
single-shot oriented scene text detector. IEEE Trans-
actions on Image Processing, 27(8):3676–3690.
Moeslund, T. B., Thomas, G., and Hilton, A. (2014). Com-
puter Vision in Sports. Springer, Switzerland.
Nag, S., Ramachandra, R., Shivakumara, P., Pal, U., Lu,
T., and Kankanhall, M. (2019). Crnn based jersey-bib
number/text recognition in sports and marathon im-
ages. In International Conference on Document Anal-
ysis and Recognition (ICDAR), pages 1149–1156,
Sydney, Australia. IEEE.
Najibi, M., Samangouei, P., Chellappa, R., and Davis,
L. S. (2017). SSH: Single stage headless face detec-
tor. In Proceedings of IEEE International Conference
on Computer Vision, pages 4875–4884, Venice, Italy.
IEEE.
Napolean, Y., Wibow, P. T., and van Gemert, J. C. (2019).
Running event visualization using videos from multi-
ple cameras. In ACM International Workshop on Mul-
timedia Content Analysis in Sports.
Penate-Sanchez, A., Freire-Obreg
´
on, D., Lorenzo-Meli
´
an,
A., Lorenzo-Navarro, J., and Castrill
´
on-Santana, M.
(2020). TGC20ReId: A dataset for sport event re-
identification in the wild. Pattern Recognition Letters,
138:355–361.
Serengil, S. I. (2021). deepface: A lightweight face
recognition and facial attribute analysis framework for
python. https://github.com/serengil/deepface.
Shi, X., Shan, S., Kan, M., Wu, S., and Chen, X. (2018).
Real-time rotation-invariant face detection with pro-
gressive calibration networks. arXiv, 1804.06039.
Shivakumara, P., Raghavendra, R., Qin, L., B.Raja, K., Luc,
T., and Pal, U. (2017). A new multi-modal approach to
bib number/text detection and recognition in marathon
images. Pattern Recognition, 61:479–491.
Thomas, G., Gade, R., Moeslund, T. B., Carr, P., and Hilton,
A. (2017). Computer vision for sports: Current ap-
plications and research topics. Computer Vision and
Image Understanding, 159:3 – 18.
Wong, Y. C., Choi, L. J., Singh, R. S. S., Zhang, H., and
Syafeeza, A. R. (2019). Deep learning based rac-
ing bib number detection and recognition. Jorda-
nian Journal of Computers and Information Technol-
ogy (JJCIT), 5(3):(3):181–194.
Wro
´
nska, A., Sarnacki, K., and Saeed, K. (2017). Athlete
number detection on the basis of their face images. In
Proceedings International Conference on Biometrics
and Kansei Engineering, pages 84–89, Kyoto, Japan.
IEEE.
Yang, S., Luo, P., Loy, C.-C., and Tang, X. (2016). Wider
face: A face detection benchmark. In IEEE Con-
ference on Computer Vision and Pattern Recognition,
pages 5525–5533, Hawai, USA. IEEE.
Zhang, K., Zhang, Z., Li, Z., and Qiao, Y. (2016). Joint
face detection and alignment using multitask cascaded
convolutional networks. IEEE Signal Processing Let-
ters, 23(10):1499–1503.
Zhang, S., Zhu, X., Lei, Z., Shi, H., Wang, X., and Li, S. Z.
(2017). Sˆ3FD: single shot scale-invariant face detec-
tor. In In IEEE International Conference on Computer
Vision (ICCV), pages 192–201, Venice, Italy. IEEE.
Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., and Tian,
Q. (2015). Scalable person re-identification: A bench-
mark. In Proceedings of the Internattional Conference
on Computer Vision.
Boosting Re-identification in the Ultra-running Scenario
469