REFERENCES
Biewald, L. (2020). Experiment tracking with weights and
biases. Software available from wandb.com.
Chen, T. and Guestrin, C. (2016). XGBoost: A scalable
tree boosting system. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’16, pages
785–794, New York, NY, USA. ACM.
Cruciani, F., Cleland, I., Nugent, C., McCullagh, P., Synnes,
K., and Hallberg, J. (2018). Automatic annotation
for human activity recognition in free living using a
smartphone. Sensors, 18(7).
Donahue, J., Hendricks, L., Guadarrama, S., Rohrbach, M.,
Venugopalan, S., Darrell, T., and Saenko, K. (2015).
Long-term recurrent convolutional networks for visual
recognition and description. pages 2625–2634.
Gutzeit, L. (2021). A comparison of few-shot classification
of human movement trajectories. In Proceedings of
the 10th International Conference on Pattern Recog-
nition Applications and Methods (ICPRAM-2021),
February 4-6, Austria, pages 243–250. SciTePress.
Gutzeit, L., Fabisch, A., Petzold, C., Wiese, H., and Kirch-
ner, F. (2019a). Automated robot skill learning from
demonstration for various robot systems. In KI 2019:
Advances in Artificial Intelligence. German Confer-
ence on Artificial Intelligence (KI-2019), Septem-
ber 23-26, Kassel, Germany, LNAI, pages 168–181.
Springer.
Gutzeit, L., Otto, M., and Kirchner, E. A. (2019b). Simple
and robust automatic detection and recognition of hu-
man movement patterns in tasks of different complex-
ity. In Physiological Computing Systems. Springer.
Gutzeit, L., Schr
¨
oer, M., Metzen, J. H., and Kirchner, E. A.
(2014). Velocity-based multiple change-point infer-
ence for unsupervised segmentation of human move-
ment behavior. In Proceedings of the 22nd Inter-
national Conference on Pattern Recognition. Inter-
national Conference on Pattern Recognition (ICPR-
2014), 22nd, August 24-28, Stockholm, Sweden, pages
4564–4569. IEEE.
Ho, T. K. (1995). Random decision forests. In Proceedings
of 3rd international conference on document analysis
and recognition, volume 1, pages 278–282. IEEE.
Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural computation, 9(8):1735–1780.
Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L.,
and Muller, P.-A. (2019). Deep learning for time series
classification: a review. Data Mining and Knowledge
Discovery, 33(4):917–963.
Ji, S., Xu, W., Yang, M., and Yu, K. (2013). 3d convolu-
tional neural networks for human action recognition.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 35(1):221–231.
Kim, Y. (2014). Convolutional neural networks for sentence
classification. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2014, October 25-29, 2014, Doha,
Qatar, A meeting of SIGDAT, a Special Interest Group
of the ACL, pages 1746–1751.
Lundberg, S. and Lee, S. (2017). A unified approach to in-
terpreting model predictions. CoRR, abs/1705.07874.
Mutegeki, R. and Han, D. S. (2020). A cnn-lstm approach
to human activity recognition. In 2020 International
Conference on Artificial Intelligence in Information
and Communication (ICAIIC), pages 362–366.
O’Halloran, J. and Curry, E. W. J. (2019). A comparison
of deep learning models in human activity recognition
and behavioural prediction on the mhealth dataset. In
AICS.
O’Malley, T., Bursztein, E., Long, J., Chollet, F., Jin,
H., Invernizzi, L., et al. (2019). Kerastuner.
https://github.com/keras-team/keras-tuner.
Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). ”why
should I trust you?”: Explaining the predictions of any
classifier. CoRR, abs/1602.04938.
Schr
¨
oder, M., Yordanova, K., Bader, S., and Kirste, T.
(2016). Tool support for the online annotation of sen-
sor data.
Shamsipour, G., Shanbehzadeh, J., and Sarrafzadeh, H.
(2017). Human action recognition by conceptual fea-
tures.
van der Maaten, L. and Hinton, G. (2008). Visualizing data
using t-SNE. Journal of Machine Learning Research,
9:2579–2605.
Wang, H. and Schmid, C. (2013). Action recognition with
improved trajectories. In 2013 IEEE International
Conference on Computer Vision, pages 3551–3558.
Zhang, W., Zhao, X., and Li, Z. (2019). A comprehensive
study of smartphone-based indoor activity recognition
via xgboost. IEEE Access, 7:80027–80042.
The Influence of Labeling Techniques in Classifying Human Manipulation Movement of Different Speed
345