Bender, D. (2015). Establishing a Human Baseline for the
Winograd Schema Challenge. In MAICS, pages 39–
45.
Davis, E. and Marcus, G. (2015). Commonsense Reason-
ing and Commonsense Knowledge in Artificial Intel-
ligence. Commun. ACM, 58(9):92–103.
Davis, E., Morgenstern, L., and Ortiz, C. (2016). Human
Tests of Materials for the Winograd Schema Chal-
lenge 2016.
Davis, E., Morgenstern, L., and Ortiz, C. L. (2017). The
First Winograd Schema Challenge at Ijcai-16. AI
Magazine, 38(3):97–98.
Emami, A., De La Cruz, N., Trischler, A., Suleman, K.,
and Cheung, J. C. K. (2018). A Knowledge Hunting
Framework for Common Sense Reasoning. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1949–
1958, Brussels, Belgium. Association for Computa-
tional Linguistics.
Gentner, D. and Colhoun, J. (2010). Analogical Processes
in Human Thinking and Learning. In Towards a the-
ory of thinking, pages 35–48. Springer.
Isaak, N. and Michael, L. (2016). Tackling the Winograd
Schema Challenge Through Machine Logical Infer-
ences. In Pearce, D. and Pinto, H. S., editors, STAIRS,
volume 284 of Frontiers in Artificial Intelligence and
Applications, pages 75–86. IOS Press.
Isaak, N. and Michael, L. (2019). WinoFlexi: A Crowd-
sourcing Platform for the Development of Winograd
Schemas. In Liu, J. and Bailey, J., editors, AI 2019:
Advances in Artificial Intelligence, pages 289–302,
Cham. Springer International Publishing.
Isaak, N. and Michael, L. (2021a). Blending NLP and
Machine Learning for the Development of Winograd
Schemas. In Rocha, A. P., Steels, L., and van den
Herik, J., editors, Agents and Artificial Intelligence,
pages 188–214, Cham. Springer International Pub-
lishing.
Isaak, N. and Michael, L. (2021b). Experience and Predic-
tion: A Metric of Hardness for a Novel Litmus Test.
Journal of Logic and Computation. exab005.
Kinzler, K. D. and Spelke, E. S. (2007). Core Systems
in Human Cognition. Progress in brain research,
164:257–264.
Kocijan, V., Cretu, A.-M., Camburu, O.-M., Yordanov, Y.,
and Lukasiewicz, T. (2019). A Surprisingly Robust
Trick for Winograd Schema Challenge. arXiv preprint
arXiv:1905.06290.
Kocijan, V., Lukasiewicz, T., Davis, E., Marcus, G., and
Morgenstern, L. (2020). A Review of Winograd
Schema Challenge Datasets and Approaches.
Levesque, H., Davis, E., and Morgenstern, L. (2012). The
Winograd Schema Challenge. In Proceedings of the
13th International Conference on the Principles of
Knowledge Representation and Reasoning.
Levesque, H. J. (2014). On Our Best behaviour. Artificial
Intelligence, 212:27–35.
Marcus, G. and Davis, E. (2019). Rebooting AI: Building
Artificial Intelligence We Can Trust. Vintage.
Michael, L. (2013). Machines with Websense. In Proceed-
ings of the 11th International Symposium on Logical
Formalizations of Commonsense Reasoning.
Mitchell, M. (2019). Artificial Intelligence: A Guide for
Thinking Humans. Penguin UK.
Morgenstern, L., Davis, E., and Ortiz, C. L. (2016).
Planning, Executing, and Evaluating the Winograd
Schema Challenge. AI Magazine, 37(1):50–54.
Peng, H., Khashabi, D., and Roth, D. (2015). Solving Hard
Coreference Problems. Urbana, 51:61801.
Rahman, A. and Ng, V. (2012). Resolving Complex Cases
of Definite Pronouns: The Winograd Schema Chal-
lenge. In Proceedings of the 2012 Joint Conference
on Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning,
pages 777–789, Stroudsburg, PA, USA. Association
for Computational Linguistics.
Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). Why
Should I Trust You? Explaining the Predictions of
Any Classifier. In Proceedings of the 22nd ACM
SIGKDD international conference on knowledge dis-
covery and data mining, pages 1135–1144.
Sakaguchi, K., Bras, R. L., Bhagavatula, C., and Choi,
Y. (2020). WinoGrande: An Adversarial Wino-
grad Schema Challenge at Scale. In The Thirty-
Fourth AAAI Conference on Artificial Intelligence,
AAAI 2020, The Thirty-Second Innovative Applica-
tions of Artificial Intelligence Conference, IAAI 2020,
The Tenth AAAI Symposium on Educational Advances
in Artificial Intelligence, EAAI 2020, New York, NY,
USA, February 7-12, 2020, pages 8732–8740. AAAI
Press.
Sharma, A., Vo, N. H., Aditya, S., and Baral, C. (2015). To-
wards Addressing the Winograd Schema Challenge -
Building and Using a Semantic Parser and a Knowl-
edge Hunting Module. In Proceedings of the 24th In-
ternational Joint Conference on Artificial Intelligence,
pages 25–31.
T
´
egl
´
as, E., Vul, E., Girotto, V., Gonzalez, M., Tenenbaum,
J., and Bonatti, L. (2011). Pure Reasoning in 12-
Month-Old Infants as Probabilistic Inference. Science
(New York, N.Y.), 332:1054–9.
Wang, S., Zhang, S., Shen, Y., Liu, X., Liu, J., Gao, J., and
Jiang, J. (2019). Unsupervised Deep Structured Se-
mantic Models for Commonsense Reasoning. In Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers), pages 882–891.
ICAART 2022 - 14th International Conference on Agents and Artificial Intelligence
888