10.1016/j.asoc.2016.12.019
Bruna, J. (2017). Community Detection with Graph Neural
Networks. Stat, 1050, 27.
Chen, N., Hu, B., & Rui, Y. (2020). Dynamic Network
Community Detection with Coherent Neighborhood
Propinquity. IEEE Access, 8(November), 27915–27926.
https://doi.org/10.1109/ACCESS.2020.2970483
Chen, Y. C., Guan, Z., Peng, Y., Shao, X., & Hasseb, M.
(2010). Technology and system of constraint
programming for industry production scheduling — Part
I_ A brief survey and potential directions. Frontiers of
Mechanical Engineering in China, 5(1), 455–464.
Chin, J. H., & Ratnavelu, K. (2017). A semi-synchronous
label propagation algorithm with constraints for
community detection in complex networks. Nature
Publishing Group, 7(1), 1–12. https://doi.org/10.1038/
srep45836
Clauset, A., Newman, M. E. J., & Moore, C. (2004). Finding
community structure in very large networks. Physical
Review E, 70(6), 066111.
Fortunato, S. (2010). Community detection in graphs.
Physics Reports, 486(3–5), 75–174.
Ganj, M., Bailey, J., & Stuckey, P. J. (2018). Lagrangian
Constrained Community Detection. The Thirty-Second
AAAI Conference on Artificial Intelligence (AAAI-18),
2983–2990.
Ganji, M., Bailey, J., & Stuckey, P. J. (2017). A Declarative
Approach to Constrained Community Detection.
International Conference on Principles and Practice of
Constraint Programming, 477–494.
Girvan, M., & Newman, M. E. J. (2002). Community
structure in social and biological networks. Proceedings
of the National Academy of Sciences, 99(12), 7821–7826.
Karimi, F., Lotfi, S., & Izadkhah, H. (2020). Multiplex
community detection in complex networks using an
evolutionary approach. Expert Systems with
Applications, 146, 113184. https://doi.org/10.1016/j.es
wa.2020.113184
Li, P.-Z., Huang, L., Wang, C.-D., & Lai, J.-H. (2019).
EdMot : An Edge Enhancement Approach for Motif-
aware Community Detection. The 25th ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining, 479–487. https://doi.org/10.1145/
3292500.3330882
Li, P., Huang, L., Wang, C., Huang, D., & Lai, J. (2018).
Community Detection Using Attribute Homogenous
Motif. IEEE Access, 6, 47707–47716. https://doi.org/
10.1109/ACCESS.2018.2867549
Lu, H., Halappanavar, M., & Kalyanaraman, A. (2015).
Parallel heuristics for scalable community detection.
Parallel Computing, 47, 19–37. https://doi.org/10.1016/
j.parco.2015.03.003
Luxburg, U. Von. (2007). A Tutorial on Spectral Clustering.
Statistics and Computing, 17(4), 395–416.
Moayedikia, A. (2018). Multi-objective community
detection algorithm with node importance analysis in
attributed networks. Applied Soft Computing Journal, 67,
434–451. https://doi.org/10.1016/j.asoc.2018.03.014
Moosa, J., Awad, W., & Kalganova, T. (2021). Intelligent
Community Detection : Comparative Study
(COVID19 Dataset). EAMMIS 2021: Artificial
Intelligence Systems and the Internet of Things in the
Digital Era, 239, 189–196.
Nakata, K., & Murata, T. (2015). Fast Optimization of
Hamiltonian for Constrained Community Detection.
Complex Networks VI, 79–89.
Newman, M. (2003). Fast algorithm for detecting community
structure in networks. Physical Review E, 69(6), 066133.
Newman, M. E. J. (2006). Modularity and community
structure in networks. The National Academy of Sciences,
103(23), 8577–8582.
Newman, M. E. J., & Girvan, M. (2004). Finding and
evaluating community structure in networks. Physical
Review E - Statistical, Nonlinear, and Soft Matter
Physics, 69(2 2), 1–16. https://doi.org/10.1103/Phys
RevE.69.026113
Raghavan, U. N., Albert, R., & Kumara, S. (2007). Near
linear time algorithm to detect community structures in
large-scale networks. Physical Review E - Statistical,
Nonlinear, and Soft Matter Physics, 76(3), 1–11.
https://doi.org/10.1103/PhysRevE.76.036106
Rozemberczki, B., Davies, R., Sarkar, R., & Sutton, C.
(2019). GemSec: Graph embedding with self clustering.
Proceedings of the 2019 IEEE/ACM International
Conference on Advances in Social Networks Analysis
and Mining, ASONAM 2019, 65–72. https://doi.org/
10.1145/3341161.3342890
Shen, H., Cheng, X., Guo, F., Gao, L., & Yong, X. (2009).
Detecting the overlapping and hierarchical community
structure in complex networks. New Journal of Physics,
11(3), 033015. https://doi.org/10.1088/1367-2630/11/3/
033015
Sobolevsky, S., Campari, R., Belyi, A., & Ratti, C. (2014). A
General Optimization Technique for High Quality
Community Detection in Complex Networks. Physical
Review E, 90(1), 012811.
Tsung, C. K., Ho, H. J., Chen, C. Y., Chang, T. W., & Lee,
S. L. (2020). Detecting overlapping communities in
modularity optimization by reweighting vertices.
Entropy, 22(8), 819. https://doi.org/10.3390/E22080819
Usman, M., Iqbal, W., Mary, Q., & Qadir, J. (2020).
Leveraging Data Science To Combat COVID-19 : A
Comprehensive Review. IEEE Transactions on Artificial
Intelligence, 1(1), 85–103. https://doi.org/10.13140/
RG.2.2.12685.28644/4
Viles, W., & O’Malley, J. (2017). Constrained Community
Detection in Social Networks. arXiv prep.
World Health Organization. (2021). Contact tracing in the
context of COVID-19: Interim guidance. Paediatrics and
Family Medicine, WHO/2019-nCoV/Contact_Tracing/
2020.1, 1–11. https://doi.org/10.15557/PiMR.2020.0005
WU, L., ZHANG, Q., CHEN, C.-H., GUO, K., & WANG,
D. (2020). Deep Learning Techniques for Community
Detection in Social Networks. IEEE Access, 8, 96016–
96026. https://doi.org/10.1109/ACCESS.2020.2996001
Wu, P., & Pan, L. (2016). Multi-objective community
detection method by integrating users ’ behavior
attributes. Neurocomputing, 210, 13–25. https://doi.org/
10.1016/j.neucom.2015.11.128
Ye, F., Chen, C., & Zheng, Z. (2018). Deep autoencoder-like
nonnegative matrix factorization for community
detection. International Conference on Information and
Knowledge Management, Proceedings, 1393–1402.
https://doi.org/10.1145/3269206.3271697