ious optimization problems as it is expected to be su-
perior to ML techniques where a learning process is
preformed over a data set generated in an offline phase
to provide sub-optimal solutions in a real time phase.
ACKNOWLEDGEMENTS
This work has been supported in by the Engineer-
ing and Physical Sciences Research Council (EP-
SRC), in part by the INTERNET project under Grant
EP/H040536/1, and in part by the STAR project under
Grant EP/K016873/1 and in part by the TOWS project
under Grant EP/S016570/1. All data are provided in
full in the results section of this paper.
REFERENCES
Abdelhady, A. M., Amin, O., Chaaban, A., Shihada, B., and
Alouini, M.-S. (2019). Downlink resource allocation
for dynamic tdma-based vlc systems. IEEE Transac-
tions on Wireless Communications, 18(1):108–120.
Adnan-Qidan, A., Morales-Cespedes, M., Garcia-Armada,
A., and Elmirghani, J. M. H. (2021). Resoures al-
location in laser-based optical wireless networks. In
GLOBECOM 2021 - IEEE Global Communications
Conference, pages 1–6.
Adnan-Qidan, A., Morales-C
´
espedes, M., and Armada,
A. G. (2020). Load balancing in hybrid vlc and rf net-
works based on blind interference alignment. IEEE
Access, 8:72512–72527.
Adnan-Qidan, A., Morales C
´
espedes, M., and Garc
´
ıa Ar-
mada, A. (2019). User-centric blind interference
alignment design for visible light communications.
IEEE Access, 7:21220–21234.
Ahmad, R., Soltani, M. D., Safari, M., Srivastava, A., and
Das, A. (2020). Reinforcement learning based load
balancing for hybrid lifi wifi networks. IEEE Access,
8:132273–132284.
Alazwary, K., Qidan, A. A., El-Gorashi, T., and Elmirghani,
J. M. H. (2021). Rate splitting in vcsel-based op-
tical wireless networks. In 2021 6th International
Conference on Smart and Sustainable Technologies
(SpliTech), pages 1–5.
Bawazir, S. S., Sofotasios, P. C., Muhaidat, S., Al-
Hammadi, Y., and Karagiannidis, G. K. (2018). Multi-
ple access for visible light communications: Research
challenges and future trends. IEEE Access, 6:26167–
26174.
Elgamal, A. S., Alsulami, O. Z., Qidan, A. A., El-Gorashi,
T. E., and Elmirghani, J. M. H. (2021). Q-learning al-
gorithm for resource allocation in wdma-based optical
wireless communication networks. In 2021 6th Inter-
national Conference on Smart and Sustainable Tech-
nologies (SpliTech), pages 1–5.
Gou, T., Wang, C., and Jafar, S. A. (2011). Aiming perfectly
in the dark-blind interference alignment through stag-
gered antenna switching. IEEE Transactions on Sig-
nal Processing, 59(6):2734–2744.
Li, H., Chen, X., Guo, J., and Chen, H. (2014). A 550
mbit/s real-time visible light communication system
based on phosphorescent white light led for practical
high-speed low-complexity application. Opt. Express,
22(22):27203–27213.
Marshoud, H., Dawoud, D., Kapinas, V. M., Karagiannidis,
G. K., Muhaidat, S., and Sharif, B. (2015). Mu-mimo
precoding for vlc with imperfect csi. In 2015 4th In-
ternational Workshop on Optical Wireless Communi-
cations (IWOW), pages 93–97.
Morales-C
´
espedes, M., Paredes, M. P., Armada, A. G., and
Vandendorpe, L. (2017). Aligning the light without
channel state information for visible light communi-
cations. to appear in IEEE Journal on Selected Areas
in Communications.
Pham, T. V., Le-Minh, H., and Pham, A. T. (2017). Multi-
user visible light communication broadcast channels
with zero-forcing precoding. IEEE Transactions on
Communications, 65(6):2509–2521.
Qidan, A. A., Morales-Cespedes, M., and Armada, A. G.
(2018). The role of wifi in lifi hybrid networks
based on blind interference alignment. In 2018 IEEE
87th Vehicular Technology Conference (VTC Spring),
pages 1–5.
Qidan, A. A., Morales Cespedes, M., Garcia Armada, A.,
and Elmirghani, J. M. (2021a). Resource allocation in
user-centric optical wireless cellular networks based
on blind interference alignment. Journal of Lightwave
Technology, pages 1–1.
Qidan, A. A., Morales-C
´
espedes, M., Armada, A. G., and
Elmirghani, J. M. H. (2021b). User-centric cell forma-
tion for blind interference alignment in optical wire-
less networks. In ICC 2021 - IEEE International Con-
ference on Communications, pages 1–7.
Qiu, Y., Chen, S., Chen, H.-H., and Meng, W. (2018). Vis-
ible light communications based on cdma technology.
IEEE Wireless Communications, 25(2):178–185.
Shrivastava, S., Chen, B., Chen, C., Wang, H., and Dai,
M. (2020). Deep q-network learning based downlink
resource allocation for hybrid rf/vlc systems. IEEE
Access, 8:149412–149434.
Sifaou, H., Kammoun, A., Park, K.-H., and Alouini, M.-S.
(2017). Robust transceivers design for multi-stream
multi-user mimo visible light communication. IEEE
Access, 5:26387–26399.
Sun, Y., Peng, M., Zhou, Y., Huang, Y., and Mao, S. (2019).
Application of machine learning in wireless networks:
Key techniques and open issues. IEEE Communica-
tions Surveys Tutorials, 21(4):3072–3108.
Wang, C.-X., Haider, F., Gao, X., You, X.-H., Yang, Y.,
Yuan, D., Aggoune, H. M., Haas, H., Fletcher, S.,
and Hepsaydir, E. (2014). Cellular architecture and
key technologies for 5g wireless communication net-
works. IEEE Communications Magazine, 52(2):122–
130.
Wang, Y., Basnayaka, D. A., Wu, X., and Haas, H.
(2017). Optimization of load balancing in hybrid lifi/rf
networks. IEEE Transactions on Communications,
65(4):1708–1720.
Zhu, G., Liu, D., Du, Y., You, C., Zhang, J., and Huang, K.
(2020). Toward an intelligent edge: Wireless commu-
nication meets machine learning. IEEE Communica-
tions Magazine, 58(1):19–25.
OWC-SP 2022 - Workshop on Optical Wireless Communications: Status and Perspectives
212