Prediction. In 2017 IEEE 29th International
Conference on Tools with Artificial Intelligence
(ICTAI), pp. 231–238.
Hajian, S.; Bonchi, F.; Castillo, C. (2016): Algorithmic
Bias. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining. KDD '16: ACM, pp. 2125–2126.
Hu, Q.; Rangwala, H. (2020): Towards Fair Educational
Data Mining: A Case Study on Detecting At-Risk
Students. In International Educational Data Mining
Society. Available online at https://eric.ed.gov/?id=
ed608050.
Jin, C. (2020): MOOC student dropout prediction model
based on learning behavior features and parameter
optimization. In Interactive Learning Environments,
pp. 1–19. DOI: 10.1080/10494820.2020.1802300.
Kizilcec, R. F.; Lee, H. (2020): Algorithmic Fairness in
Education. Forthcoming in W. Holmes & K. Porayska-
Pomsta (Eds.), Ethics in Artificial Intelligence in
Education, Taylor & Francis.
Klare, B. F.; Burge, M. J.; Klontz, J. C.; Vorder Bruegge,
R. W.; Jain, A. K. (2012): Face Recognition
Performance: Role of Demographic Information. In
IEEE Trans.Inform.Forensic Secur. 7 (6), pp. 1789–
1801. DOI: 10.1109/TIFS.2012.2214212.
Lee, V. E.; Burkam, D. T. (2007): Inequality at the starting
gate. Social background differences in achievement as
children begin school. 3. print. Washington, DC:
Economic Policy Institute.
Liang, J.; Yang, J.; Wu, Y.; Li, C.; Zheng, L. (2016): Big
Data Application in Education: Dropout Prediction in
Edx MOOCs. In 2016 IEEE Second International
Conference on Multimedia Big Data (BigMM), pp.
440–443.
Luan, H.; Tsai, C. (2021): A Review of Using Machine
Learning Approaches for Precision Education. In
Educational Technology & Society 24 (1), pp. 250–266.
Available online at https://www.jstor.org/stable/
26977871.
Merriam-Webster Dictionary (2021a): Bias. Available
online at https://www.merriam-webster.com/
dictionary/bias.
Merriam-Webster Dictionary (2021b): Fairness. Available
online at https://www.merriam-webster.com/
dictionary/fairness.
Mitchell, S.; Potash, E.; Barocas, S.; D'Amour, A.; Lum, K.
(2021): Algorithmic Fairness: Choices, Assumptions,
and Definitions. In Annu. Rev. Stat. Appl. 8 (1), pp.
141–163.
Tasnim, N.; Paul, M. K.; Sattar, A. H. M. S. (2019):
Identification of Drop Out Students Using Educational
Data Mining. In 2019 International Conference on
Electrical, Computer and Communication Engineering
(ECCE). Engineering (ECCE), pp. 1–5.
Noble, J.; Davies, P. (2009): Cultural capital as an
explanation of variation in participation in higher
education. In British Journal of Sociology of Education
30 (5), pp. 591–605.
Okubo, F.; Yamashita, T.; Shimada, A.; Ogata, H. (2017):
A neural network approach for students' performance
prediction. In Proceedings of the Seventh International
Learning Analytics & Knowledge Conference. ACM.
O'Neil, C. (2016): Weapons of Math Destruction. How big
data increases inequality and threatens democracy. New
York: Crown/Archetype (ProQuest Ebook Central).
Pessach, D.; Shmueli, E. (2020): Algorithmic Fairness.
arXiv preprint arXiv:2001.09784.
Prates, M. O. R.; Avelar, P. H.; Lamb, L. C. (2020):
Assessing gender bias in machine translation: a case
study with Google Translate. In Neural Comput &
Applic 32 (10), pp. 6363–6381. DOI: 10.1007/s00521-
019-04144-6.
Prenkaj, B.; Velardi, P.; Stilo, G.; Distante, D.; Faralli, S.
(2020): A Survey of Machine Learning Approaches for
Student Dropout Prediction in Online Courses. In ACM
Comput. Surv. 53 (3), pp. 1–34. DOI:
10.1145/3388792.
Riazy, S.; Simbeck, K. (2019): Predictive Algorithms in
Learning Analytics and their Fairness. In DELFI 2019.
DOI: 10.18420/delfi2019_305.
Rzepka, N.; Simbeck, K.; Müller, H.-G.; Pinkwart, N.:
Keep It Up: In-Session Dropout Prediction to Support
Blended Classroom Scenarios. In Proceedings of the
14th International Conference on Computer Supported
Education (CSEDU 2022), 2022 (forthcoming).
Sénéchal, M.; LeFevre, J. (2002): Parental involvement in
the development of children's reading skill: a five-year
longitudinal study. In Child development 73 (2), pp.
445–460. DOI: 10.1111/1467-8624.00417.
Shahiri, A. M.; Husain, W.; Rashid, N. A. (2015): A
Review on Predicting Student's Performance Using
Data Mining Techniques. In Procedia Computer
Science 72, pp. 414–422.
Stapel, M.; Zheng, Z.; Pinkwart, N. (2016): An Ensemble
Method to Predict Student Performance in an Online
Math Learning Environment. In International
Educational Data Mining Society.
Steinlen, A. K.; Piske, T. (2013): Academic achievement of
children with and without migration backgrounds in an
immersion primary school: A pilot study. In Zeitschrift
für Anglistik und Amerikanistik 61 (3), pp. 215–244.
DOI: 10.1515/zaa-2013-0303.
Sun, D.; Mao, Y.; Du, J.; Xu, P.; Zheng, Q.; Sun, H. (2019):
Deep Learning for Dropout Prediction in MOOCs. In
2019 Eighth International Conference on Educational
Innovation through Technology (EITT), pp. 87–90.
Suresh, H.; Guttag, J. V. (2019): A Framework for
Understanding Sources of Harm throughout the
Machine Learning Life Cycle. In Equity and Access in
Algorithms, Mechanisms, and Optimization, (pp. 1-9).
Verma, S.; Rubin, J. (2018): Fairness definitions explained.
In Proceedings of the International Workshop on
Software Fairness. ACM.
Wang, W.; Yu, H.; Miao, C. (2017): Deep Model for
Dropout Prediction in MOOCs. In Proceedings of the
2nd International Conference on Crowd Science and
Engineering. the 2nd International Conference. ACM,
pp. 26–32.
Xing, W.; Du, D. (2019): Dropout Prediction in MOOCs:
Using Deep Learning for Personalized Intervention. In
Journal of Educational Computing Research 57 (3), pp.
547–570. DOI: 10.1177/0735633118757015.