Greff, K., Srivastava, R. K., Koutn
´
ık, J., Steunebrink, B. R.,
and Schmidhuber, J. (2016). Lstm: A search space
odyssey. IEEE transactions on neural networks and
learning systems, 28(10):2222–2232.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 770–778.
Jung, H., Choi, M.-K., Jung, J., Lee, J.-H., Kwon, S., and
Young Jung, W. (2017). Resnet-based vehicle classifi-
cation and localization in traffic surveillance systems.
In Proceedings of the IEEE conference on computer
vision and pattern recognition workshops, pages 61–
67.
Kobayashi, T., Hidaka, A., and Kurita, T. (2007). Selection
of histograms of oriented gradients features for pedes-
trian detection. In International conference on neural
information processing, pages 598–607. Springer.
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Doll
´
ar, P., and Zitnick, C. L. (2014).
Microsoft coco: Common objects in context. In Euro-
pean conference on computer vision, pages 740–755.
Springer.
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.,
Fu, C.-Y., and Berg, A. C. (2016). Ssd: Single shot
multibox detector. In European conference on com-
puter vision, pages 21–37. Springer.
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., et al. (2019). Pytorch: An imperative style,
high-performance deep learning library. Advances in
neural information processing systems, 32.
Redmon, J. and Farhadi, A. (2018). Yolov3: An incremental
improvement. arXiv preprint arXiv:1804.02767.
Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster
r-cnn: Towards real-time object detection with region
proposal networks. Advances in neural information
processing systems, 28:91–99.
Reynolds, D. A. (2009). Gaussian mixture models. Ency-
clopedia of biometrics, 741:659–663.
Roy, S. and Rahman, M. S. (2019). Emergency vehicle de-
tection on heavy traffic road from cctv footage using
deep convolutional neural network. In 2019 Interna-
tional Conference on Electrical, Computer and Com-
munication Engineering (ECCE), pages 1–6. IEEE.
Shekade, A., Mahale, R., Shetage, R., Singh, A., and
Gadakh, P. (2020). Vehicle classification in traffic
surveillance system using yolov3 model. In 2020 In-
ternational Conference on Electronics and Sustain-
able Communication Systems (ICESC), pages 1015–
1019. IEEE.
Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556.
Suhao, L., Jinzhao, L., Guoquan, L., Tong, B., Huiqian,
W., and Yu, P. (2018). Vehicle type detection based
on deep learning in traffic scene. Procedia computer
science, 131:564–572.
Suykens, J. A. and Vandewalle, J. (1999). Least squares
support vector machine classifiers. Neural processing
letters, 9(3):293–300.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabi-
novich, A. (2015). Going deeper with convolutions.
In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1–9.
Tan, M., Pang, R., and Le, Q. V. (2020). Efficientdet: Scal-
able and efficient object detection. In Proceedings
of the IEEE/CVF conference on computer vision and
pattern recognition, pages 10781–10790.
Wang, X., Ma, X., and Grimson, W. E. L. (2008). Un-
supervised activity perception in crowded and com-
plicated scenes using hierarchical bayesian models.
IEEE Transactions on pattern analysis and machine
intelligence, 31(3):539–555.
Wightman, R. (2019). Pytorch image models. https:
//github.com/rwightman/pytorch-image-models.
Critical Vehicle Detection for Intelligent Transportation Systems
171