ACKNOWLEDGEMENTS
This research was funded by the Federal Ministry of
Education and Research of Germany in the frame-
work “Digitalisierung im Bildungsbereich” (project
number 01JD1812A).
REFERENCES
Blumenstein, M. (2017). The Student Relationship Engage-
ment System (SRES). In Building an Evidence Base
For Teaching and Learning Design Using Learning An-
alytics, 31.
Sun, D.; Mao, Y.; Du, Y.; Xu, P.; Zheng, Q.; and Sun, H.
(2019). Deep Learning for Dropout Prediction in
MOOCs. In 2019 Eighth International Conference on
Educational Innovation through Technology (EITT),
87–90.
Dalipi, F.; Imran, A. S.; and Kastrati, Z. (2018). MOOC
Dropout Prediction Using Machine Learning Tech-
niques: Review and Research Challenges. In 2018
IEEE Global Engineering Education Conference
(EDUCON), 1007-1014. IEEE 2018.
Dawson, S.; Jovanovic, J.; Gašević, D.; and Pardo, A.
(2017). From prediction to impact: Evaluation of a
learning analytics retention program. In Proceedings of
the Seventh International Learning Analytics &
Knowledge Conference. ACM, 474–478.
DOI=10.1145/3027385.3027405.
Gerick, J.; Eickelmann, B.; and Bos, W. (2016). Zum
Stellenwert neuer Technologien für die individuelle
Förderung im Deutschunterricht in der Grundschule. In
Individualisierung im Grundschulunterricht. Anspruch,
Realisierung und Risiken, 131–136.
Hagedoorn, T. R.; and Spanakis, G. (2017). Massive Open
Online Courses Temporal Profiling for Dropout Predic-
tion. In 2017 IEEE 29th International Conference on
Tools with Artificial Intelligence (ICTAI), 231–238.
Hernández-Blanco, A.; Herrera-Flores, B.; Tomás, D.; and
Navarro-Colorado, B. (2019). A Systematic Review of
Deep Learning Approaches to Educational Data Min-
ing. In Complexity 2019, 1–22.
Herodotou, C.; Heiser, S.; and Rienties, B. (2017). Imple-
menting randomised control trials in open and distance
learning: a feasibility study. In Open Learning: The
Journal of Open, Distance and e-Learning 32, 2, 147–
162.
Liang, J.; Yang, J.; Wu, Y.; Li, C.; and Zheng, L. (2016).
Big Data Application in Education: Dropout Prediction
in Edx MOOCs. In 2016 IEEE Second International
Conference on Multimedia Big Data (BigMM), 440–
443.
Milne, J. (2017). Early alerts to encourage students to use
Moodle. In Building an evidence base for teaching and
learning design using learning analytics, 24–30.
Kepser, M. (2018). Digitalisierung im Deutschunterricht
der Sekundarstufen. Ein Blick zurück und Einblicke in
die Zukunft. In Mitteilungen des Deutschen
Germanistenverbandes 65, 3, 247–268.
Lee, S.; Kim, K. S.; Shin, J.; and Park, J. (2021). Tracing
Knowledge for Tracing Dropouts: Multi-Task Training
for Study Session Dropout Prediction. In Educational
Data Mining Conference 2021.
Lee, Y.; Shin, D.; Loh, H.; Lee, J.; Chae, P.; Cho, J.; Park,
S.; Lee, J.; Baek, J.; Kim, B.; and Choi, Y. (2020).
Deep Attentive Study Session Dropout Prediction in
Mobile Learning Environment. arXiv preprint
arXiv:2002.11624.
Kloft, M.; Stiehler, F.; Zheng, Z.; and Pinkwart, N. (2014).
Predicting MOOC Dropout over Weeks Using Machine
Learning Methods. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), 60–65.
Na, K. S.; and Tasir, Z. (2017). A Systematic Review of
Learning Analytics Intervention Contributing to Stu-
dent Success in Online Learning. In Fifth International
Conference on Learning and Teaching in Computing
and Engineering - LaTiCE 2017. 62–68.
DOI=10.1109/LaTiCE.2017.18.
Smith, V. C.; Lange, A.; and Huston, D. R. (2012). Predic-
tive Modeling to Forecast Student Outcomes and Drive
Effective Interventions in Online Community College
Courses. In Journal of Asynchronous Learning Net-
works 16, 3, 51–61.
Wise, A. F. (2014). Designing pedagogical interventions to
support student use of learning analytics. In Proceed-
ings of the Fourth International Conference on Learn-
ing Analytics And Knowledge - LAK '14. 203–211.
DOI=10.1145/2567574.2567588.
Wong, B. T.; and Li, K. C. (2018). Learning Analytics In-
tervention: A Review of Case Studies. In 2018 Interna-
tional Symposium on Educational Technology (ISET).
178–182. DOI=10.1109/ISET.2018.00047.
Wong, B. T.; and Li, K. C. (2020). A review of learning
analytics intervention in higher education (2011–2018).
Journal of Computers in Education 7, 1, 7–28.
Xing, W.; and Du, D. (2019). Dropout Prediction in
MOOCs: Using Deep Learning for Personalized Inter-
vention. Journal of Educational Computing Research
57, 3, 547–570.