Association for Computational Linguistics, Proceedings
of the Conference, April 3-7, 2006, Trento, Italy. The As-
sociation for Computer Linguistics.
Cheng, Y., Xu, W., He, Z., He, W., Wu, H., Sun, M., and
Liu, Y. (2016). Semi-supervised learning for neural ma-
chine translation. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguis-
tics, ACL 2016, August 7-12, 2016, Berlin, Germany,
Volume 1: Long Papers. The Association for Computer
Linguistics.
Cherry, C. and Foster, G. F. (2012). Batch tuning strategies
for statistical machine translation. In Human Language
Technologies: Conference of the North American Chap-
ter of the Association of Computational Linguistics, Pro-
ceedings, June 3-8, 2012, Montr
´
eal, Canada, pages 427–
436. The Association for Computational Linguistics.
Dehghani, M., Gouws, S., Vinyals, O., Uszkoreit, J., and
Kaiser, L. (2019). Universal transformers. In 7th Inter-
national Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.
Deng, Y., Cheng, S., Lu, J., Song, K., Wang, J., Wu, S., Yao,
L., Zhang, G., Zhang, H., Zhang, P., Zhu, C., and Chen,
B. (2018). Alibaba’s neural machine translation systems
for WMT18. In Bojar, O., Chatterjee, R., Federmann, C.,
Fishel, M., Graham, Y., Haddow, B., Huck, M., Jimeno-
Yepes, A., Koehn, P., Monz, C., Negri, M., N
´
ev
´
eol, A.,
Neves, M. L., Post, M., Specia, L., Turchi, M., and
Verspoor, K., editors, Proceedings of the Third Con-
ference on Machine Translation: Shared Task Papers,
WMT 2018, Belgium, Brussels, October 31 - November
1, 2018, pages 368–376. Association for Computational
Linguistics.
Ding, S., Duh, K., Khayrallah, H., Koehn, P., and Post, M.
(2016). The JHU machine translation systems for WMT
2016. In Proceedings of the First Conference on Machine
Translation, WMT 2016, colocated with ACL 2016, Au-
gust 11-12, Berlin, Germany, pages 272–280. The Asso-
ciation for Computer Linguistics.
Gezmu, A. M., N
¨
urnberger, A., and Bati, T. B. (2021a).
Extended parallel corpus for Amharic-English machine
translation. CoRR, abs/2104.03543.
Gezmu, A. M., N
¨
urnberger, A., and Bati, T. B. (2021b).
Neural machine translation for Amharic-English transla-
tion. In Rocha, A. P., Steels, L., and van den Herik, H. J.,
editors, Proceedings of the 13th International Confer-
ence on Agents and Artificial Intelligence, ICAART 2021,
Volume 1, Online Streaming, February 4-6, 2021, pages
526–532. SCITEPRESS.
Gezmu, A. M., Seyoum, B. E., Gasser, M., and N
¨
urnberger,
A. (2018). Contemporary Amharic corpus: Automati-
cally morpho-syntactically tagged Amharic corpus. In
Proceedings of the First Workshop on Linguistic Re-
sources for Natural Language Processing, pages 65–70,
Santa Fe, New Mexico, USA. Association for Computa-
tional Linguistics.
He, D., Xia, Y., Qin, T., Wang, L., Yu, N., Liu, T., and Ma,
W. (2016). Dual learning for machine translation. In
Lee, D. D., Sugiyama, M., von Luxburg, U., Guyon, I.,
and Garnett, R., editors, Advances in Neural Information
Processing Systems 29: Annual Conference on Neural
Information Processing Systems 2016, December 5-10,
2016, Barcelona, Spain, pages 820–828.
Heafield, K. (2011). Kenlm: Faster and smaller lan-
guage model queries. In Callison-Burch, C., Koehn,
P., Monz, C., and Zaidan, O., editors, Proceedings of
the Sixth Workshop on Statistical Machine Translation,
WMT@EMNLP 2011, Edinburgh, Scotland, UK, July
30-31, 2011, pages 187–197. Association for Computa-
tional Linguistics.
Huang, L. and Chiang, D. (2007). Forest rescoring: Faster
decoding with integrated language models. In Car-
roll, J. A., van den Bosch, A., and Zaenen, A., editors,
ACL 2007, Proceedings of the 45th Annual Meeting of
the Association for Computational Linguistics, June 23-
30, 2007, Prague, Czech Republic. The Association for
Computational Linguistics.
Kingma, D. P. and Ba, J. (2015). Adam: A method for
stochastic optimization. In Bengio, Y. and LeCun, Y.,
editors, 3rd International Conference on Learning Rep-
resentations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings.
Kneser, R. and Ney, H. (1995). Improved backing-off for
m-gram language modeling. In 1995 International Con-
ference on Acoustics, Speech, and Signal Processing,
ICASSP ’95, Detroit, Michigan, USA, May 08-12, 1995,
pages 181–184. IEEE Computer Society.
Koehn, P. and Haddow, B. (2009). Edinburgh’s submis-
sion to all tracks of the WMT 2009 shared task with re-
ordering and speed improvements to moses. In Callison-
Burch, C., Koehn, P., Monz, C., and Schroeder, J., ed-
itors, Proceedings of the Fourth Workshop on Statisti-
cal Machine Translation, WMT@EACL 2009, Athens,
Greece, March 30-31, 2009, pages 160–164. Association
for Computational Linguistics.
Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Fed-
erico, M., Bertoldi, N., Cowan, B., Shen, W., Moran, C.,
Zens, R., Dyer, C., Bojar, O., Constantin, A., and Herbst,
E. (2007). Moses: Open source toolkit for statistical ma-
chine translation. In Carroll, J. A., van den Bosch, A.,
and Zaenen, A., editors, ACL 2007, Proceedings of the
45th Annual Meeting of the Association for Computa-
tional Linguistics, June 23-30, 2007, Prague, Czech Re-
public. The Association for Computational Linguistics.
Koehn, P. and Knowles, R. (2017). Six challenges for neural
machine translation. In Luong, T., Birch, A., Neubig,
G., and Finch, A. M., editors, Proceedings of the First
Workshop on Neural Machine Translation, NMT@ACL
2017, Vancouver, Canada, August 4, 2017, pages 28–39.
Association for Computational Linguistics.
Koehn, P., Och, F. J., and Marcu, D. (2003). Statistical
phrase-based translation. In Hearst, M. A. and Osten-
dorf, M., editors, Human Language Technology Confer-
ence of the North American Chapter of the Association
NLPinAI 2022 - Special Session on Natural Language Processing in Artificial Intelligence
464