Li, E., Xia, J., Du, P., Lin, C., and Samat, A. (2017).
Integrating multilayer features of convolutional neural
networks for remote sensing scene classification, IEEE
Trans. Geosci. Remote Sens., vol. 55, no. 10, pp. 5653–
5665, Oct. 2017.
Lotte, F., Bougrain, L., Cichocki, A., Clerc, M., Congedo,
M., Rakotomamonjy, A., Yger, F. (2018). A review of
classification algorithms for EEG-based brain computer
interfaces: a 10 year update[J]. J Neural Eng
15(3):031005
Muhammad, G., Masud, M., Amin, S. U., Alrobaea, R.,
Alhamid, M. F. (2018). Automatic seizure detection in
a mobile multimedia framework, IEEE Access, vol. 6,
pp. 45372–45383
Nguyen, T., Hettiarachchi, I., Khosravi, A., Salaken, S.M.,
Bhatti, As., Nahavandi, S. (2017).
Multiclass_EEG_Data_Classification_using_Fuzzy_S
ystems, IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE), Naples, Italy, pp. 1-6.
Pfurtscheller, G., Neuper, C. (2001). Motor imagery and
direct brain computer communication[J]. Proc IEEE
89(7):1123–1134
Qiao, W., Bi, X. (2020). Ternary-task convolutional
bidirectional neural turing machine for assessment of
EEG-based cognitive workload[J]. Biomedl Signal
Process Control 57:101745
R. Leeb, C., Brunner, G., Müller-Putz, G., Schlögl, A., and
Pfurtscheller, G. (2008). BCI competition 2008-Graz
data set A and B. Inst. Knowl. Discovery, Lab. Brain-
Comput. Interfaces, Graz Univ. Technol., Graz,
Austria, Tech. Rep. 1–6, 2008, pp. 136–142.
Robinson, N., Lee, S. W., & Guan, C. (2019). EEG
Representation in Deep Convolutional Neural
Networks for Classifcation of Motor Imagery. In 2019
IEEE International Conference on Systems, Man and
Cybernetics (SMC), IEEE. https://doi.org/10.1109/
SMC.2019.8914184
Royer, A. S., Doud, A. J., Rose, M. L., He, B. (2010). EEG
control of a virtual helicopter in 3-dimensional space
using intelligent control strategies[J]. IEEE Trans
Neural Syst Rehabil Eng 18(6):581–589
Sandheep. P., Vineeth, S., Poulose, M., Subha, D. P. (2019).
Performance analysis of deep learning CNN in
classification of depression EEG signals, TENCON
2019 - 2019 IEEE Region 10 Conference (TENCON),
Kochi, India, 2019: 1339–1344.
Soleymani, S., Dabouei, A., Kazemi, H., Dawson, J., and
Nasrabadi, N. M. (2018). Multi-level feature
abstraction from convolutional neural networks for
multimodal biometric identification. [Online].
Available: https://arxiv.org/abs/1807.01332
Tabar, Y. R. & Halici, U. (2017). A novel deep learning
approach for classifcation of eeg motor imagery
signals. J. Neural Eng. 14(1), 016003.
https://doi.org/10.1088/1741-2560/14/1/016003
Ueki, K., and Kobayashi, T. (2015). Multi-layer feature
extractions for image classification-Knowledge from
deep CNNs. In Proc. Int. Conf. Syst., Signals Image
Process. (IWSSIP), London, U.K., Sep. 2015, pp. 9–12.
Usman, S. M., Khalid, S., Akhtar, R., Bortolotto, Z., Bashir,
Z., Qiu, H. (2019). Using scalp EEG and intracranial
EEG signals for predicting epileptic seizures: review of
available methodologies[J]. Seizure 71:258–269
Xue, J. Z., Zhang, H., Zheng, C. X. (2003). Wavelet packet
transform for feature extraction of EEG during mental
tasks, In Proceedings of the Second International
Conference on Machine Learning and Cybernetics,
Xi’an.
Zhang, P., Wang, D., Lu, H., Wang, H., and Ruan, X.
(2017). Amulet: Aggregating multi-level convolutional
features for salient object detection. In Proc. IEEE Int.
Conf. Comput. Vis., Jun. 2017, pp. 202–211.
Zhao, X. et al. (2019). A multi-branch 3D convolutional
neural network for EEG-based motor imagery
classifcation. IEEE Trans. Neural Syst. Rehabil. Eng.
27(10), 2164–2177. https://doi.org/10.1109/
TNSRE.2019.2938295