Bochkovskiy, A., Wang, C. Y., Liao, H. Y. M., 2020.
YOLOv4: Optimal Speed and Accuracy of Object
Detection. arXiv:2004.10934.
CNET, 2018. Faster new Intel AI brain sticks into the side
of your PC for $99. The Neural Compute Stick 2 uses a
Movidius Myriad X artificial intelligence chip and is
geared for prototype projects. Cnet.com. [online].
Available at: https://www.cnet.com/news/faster-new-
intel-ai-brain-sticks-into-the-side-of-your-pc-for-99/.
Accessed: 10/05/2021.
Everingham, M., Van Gool, L., Williams, C. K. I., Winn,
J., Zisserman, A., 2010. The PASCAL visual object
classes (VOC) challenge. International Journal of
Computer Vision (IJCV), Volume 88, Issue 2, pp. 303-
338.
Fink, M., Liu, Y., Engstle, A., Schneider, S. A., 2019. Deep
learning-based multi-scale multi-object detection and
classification for autonomous driving. In:
Fahrerassistenzsysteme 2018, Springer, ISBN 978-3-
658-23751-6, pp. 233-242.
Hui, J., 2018. mAP (mean Average Precision) for Object
Detection. COCO mAP. Jonathan-hui.medium.com.
[online]. Available at: https://jonathan-hui.medium.
com/map-mean-average-precision-for-object-
detection-45c121a31173. Accessed: 10/05/2021.
Huang, R., Pedoeem, J., Chen, C., 2018. YOLO-LITE: A
Real-Time Object Detection Algorithm Optimized for
Non-GPU Computers. IEEE International Conference
on Big Data (IEEE Big Data 2018), ISBN 978-1-5386-
5036-3.
Intel, 2021. Intel Movidius Vision Processing Units (VPUs).
Intel.com. [online]. Available at: https://www.
intel.com/ content/www/us/en/products/details/
processors/movidius-vpu.html. Accessed: 24/06/2021.
Ivanov, I., Skryshevsky, V., 2021. Porous Silicon Bragg
Reflector Sensor: Applying HSV Color Space for
Sensor Characterization. IEEE 16th International
Conference on the Experience of Designing and
Application of CAD Systems (CADSM), ISBN: 978-1-
6654-4605-1, pp. 15-19.
Jin, Y., Wen, Y., Liang, J., 2020. Embedded Real-Time
Pedestrian Detection System Using YOLO Optimized
by LNN. International Conference on Electrical,
Communication, and Computer Engineering
(ICECCE), ISBN 978-1-7281-7117-3.
Jose, G., Kumar, A., Kruthiventi, S., Saha, S., Muralidhara,
H., 2019. Real-Time Object Detection On Low Power
Embedded Platforms. IEEE/CVF International
Conference on Computer Vision Workshop (ICCVW),
ISBN: 978-1-7281-5024-6.
Kuzmic, J., Rudolph, G., 2020. Unity 3D Simulator of
Autonomous Motorway Traffic Applied to Emergency
Corridor Building. In Proceedings of the 5th
International Conference on Internet of Things, Big
Data and Security, ISBN 978-989-758-426-8, pp. 197-
204.
Kuzmic, J., Rudolph, G., A1, 2021. Comparison between
Filtered Canny Edge Detector and Convolutional
Neural Network for Real Time Lane Detection in a
Unity 3D Simulator. In Proceedings of the 6th
International Conference on Internet of Things, Big
Data and Security (IoTBDS), ISBN 978-989-758-504-
3, pp. 148-155.
Kuzmic, J., Rudolph, G., A2, 2021. Object Detection with
TensorFlow on Hardware with Limited Resources for
Low-Power IoT Devices. 13th International Conference
on Neural Computation Theory and Applications
(NCTA).
Li, P., Chen, X., Shen, S., 2019. Stereo R-CNN Based 3D
Object Detection for Autonomous Driving. Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 7644-7652.
Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Dollár, P., Zitnick, C. L., 2014, Microsoft
COCO: common objects in context. In: Fleet D, Pajdla
T, Schiele B, Tuytelaars T, editors, Computer Vision-
ECCV 2014, Springer, ISBN 978-3-319-10602-1, pp.
740-755.
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.,
Fu, C. Y., Berg, A. C., 2016. SSD: Single Shot Multibox
Detector. In European conference on computer vision
(ECCV), Springer, 2016, pp. 21-37.
Movidius, 2019. TensorFlow Support. Movidius.github.io.
[online]. Available: https://movidius.github.io/ncsdk/
tensorflow.html. Accessed: 10/04/2021.
OpenCV, 2021. Color conversions. Opencv.org. [online].
Available at: https://docs.opencv.org/master/de/d25/
imgproc_color_conversions.html#color_convert_rgb_
hsv. Accessed: 09/03/2021.
OpenVINO, 2021. Converting a TensorFlow* Model.
Openvinotoolkit.org. [online]. Available at:
https://docs.openvinotoolkit.org/latest/openvino_docs_
MO_DG_prepare_model_convert_model_Convert_M
odel_From_TensorFlow.html#Convert_From_TF.
Accessed: 05/05/2021.
Redmon, J., Divvala, S., Girshick, R., Farhadi, A., 2016.
You only look once: Unified, real-time object detection.
In Conference on Computer Vision and Pattern
Recognition (CVPR).
Shi, Y., 2020. TensorFlow 1 Detection Model Zoo.
Github.com. [online]. Available at: https://github.com/
tensorflow/models/blob/master/research/object_detecti
on/g3doc/tf1_detection_zoo.md. Accessed:
23/06/2021.
Shermal, F., 2017. Color Detection & Object Tracking.
Opencv-srf.com. [online]. Available at: https://www.
opencv-srf.com/2010/09/object-detection-using-color-
seperation.html. Accessed: 09/03/2021.
Tianwen, W., 2021. OpenVINO-YOLOV4. Github.com.
[online]. Available at: https://github.com/TNTWEN/
OpenVINO-YOLOV4. Accessed: 10/07/2021.
Tzutalin, 2015. LabelImg. Github.com. [online]. Available
at: https://github.com/tzutalin/labelImg. Accessed:
07/05/2021
Vuppala, S. R., 2020. Getting data annotation format right
for object detection tasks. Medium.com. [online].
Available at: https://medium.com/analytics-vidhya/
getting-data-annotation-format-right-for-object-
detection-tasks-f41b07eebbf5. Accessed: 03/03/2021.