REFERENCES
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A.,
Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard,
M., et al. (2016). Tensorflow: A system for large-
scale machine learning. In 12th {USENIX} sympo-
sium on operating systems design and implementation
({OSDI} 16), pages 265–283.
Bilen, H., Fernando, B., Gavves, E., Vedaldi, A., and Gould,
S. (2016). Dynamic image networks for action recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3034–
3042.
Chollet, F. et al. (2018). Keras: The python deep learn-
ing library. Astrophysics Source Code Library, pages
ascl–1806.
Fernando, B., Gavves, E., Oramas, J. M., Ghodrati, A., and
Tuytelaars, T. (2015). Modeling video evolution for
action recognition. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition,
pages 5378–5387.
Gowayyed, M. A., Torki, M., Hussein, M. E., and El-
Saban, M. (2013). Histogram of oriented displace-
ments (hod): Describing trajectories of human joints
for action recognition. In Twenty-third international
joint conference on artificial intelligence.
Hou, Y., Li, Z., Wang, P., and Li, W. (2016). Skeleton op-
tical spectra-based action recognition using convolu-
tional neural networks. IEEE Transactions on Circuits
and Systems for Video Technology, 28(3):807–811.
Huynh-The, T., Hua, C.-H., Ngo, T.-T., and Kim, D.-S.
(2020). Image representation of pose-transition fea-
ture for 3d skeleton-based action recognition. Infor-
mation Sciences, 513:112–126.
Ke, Q., An, S., Bennamoun, M., Sohel, F., and Boussaid, F.
(2017). Skeletonnet: Mining deep part features for 3-
d action recognition. IEEE signal processing letters,
24(6):731–735.
Keceli, A. S. and Can, A. B. (2014). Recognition of basic
human actions using depth information. International
Journal of Pattern Recognition and Artificial Intelli-
gence, 28(02):1450004.
Khan, M. A., Javed, K., Khan, S. A., Saba, T., Habib, U.,
Khan, J. A., and Abbasi, A. A. (2020a). Human ac-
tion recognition using fusion of multiview and deep
features: an application to video surveillance. Multi-
media tools and applications, pages 1–27.
Khan, M. A., Sharif, M., Akram, T., Raza, M., Saba, T., and
Rehman, A. (2020b). Hand-crafted and deep convo-
lutional neural network features fusion and selection
strategy: an application to intelligent human action
recognition. Applied Soft Computing, 87:105986.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
agenet classification with deep convolutional neural
networks. Advances in neural information processing
systems, 25:1097–1105.
Li, C., Hou, Y., Wang, P., and Li, W. (2017). Joint dis-
tance maps based action recognition with convolu-
tional neural networks. IEEE Signal Processing Let-
ters, 24(5):624–628.
Liu, C., Hu, Y., Li, Y., Song, S., and Liu, J. (2017). Pku-
mmd: A large scale benchmark for continuous multi-
modal human action understanding. arXiv preprint
arXiv:1703.07475.
Liu, J., Akhtar, N., and Mian, A. (2019a). Skepxels:
Spatio-temporal image representation of human skele-
ton joints for action recognition. In CVPR workshops.
Liu, J., Shahroudy, A., Perez, M., Wang, G., Duan, L.-Y.,
and Kot, A. C. (2019b). Ntu rgb+ d 120: A large-
scale benchmark for 3d human activity understanding.
IEEE transactions on pattern analysis and machine
intelligence, 42(10):2684–2701.
Papadakis, A., Mathe, E., Spyrou, E., and Mylonas, P.
(2019a). A geometric approach for cross-view human
action recognition using deep learning. In 2019 11th
International Symposium on Image and Signal Pro-
cessing and Analysis (ISPA), pages 258–263. IEEE.
Papadakis, A., Mathe, E., Vernikos, I., Maniatis, A., Spy-
rou, E., and Mylonas, P. (2019b). Recognizing human
actions using 3d skeletal information and cnns. In In-
ternational Conference on Engineering Applications
of Neural Networks, pages 511–521. Springer.
Paraskevopoulos, G., Spyrou, E., Sgouropoulos, D., Gian-
nakopoulos, T., and Mylonas, P. (2019). Real-time
arm gesture recognition using 3d skeleton joint data.
Algorithms, 12(5):108.
Pazhoumand-Dar, H., Lam, C.-P., and Masek, M. (2015).
Joint movement similarities for robust 3d action
recognition using skeletal data. Journal of Visual
Communication and Image Representation, 30:10–21.
Pham, H. H., Salmane, H., Khoudour, L., Crouzil, A.,
Zegers, P., and Velastin, S. A. (2019). Spatio–
temporal image representation of 3d skeletal move-
ments for view-invariant action recognition with deep
convolutional neural networks. Sensors, 19(8):1932.
Schuldt, C., Laptev, I., and Caputo, B. (2004). Recognizing
human actions: a local svm approach. In Proceed-
ings of the 17th International Conference on Pattern
Recognition, 2004. ICPR 2004., volume 3, pages 32–
36. IEEE.
Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556.
Spyrou, E., Mathe, E., Pikramenos, G., Kechagias, K., and
Mylonas, P. (2020). Data augmentation vs. domain
adaptation—a case study in human activity recogni-
tion. Technologies, 8(4):55.
Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A. A.
(2017). Inception-v4, inception-resnet and the impact
of residual connections on learning. In Thirty-first
AAAI conference on artificial intelligence.
Uddin, M. A. and Lee, Y.-K. (2019). Feature fusion of
deep spatial features and handcrafted spatiotempo-
ral features for human action recognition. Sensors,
19(7):1599.
Vernikos, I., Mathe, E., Papadakis, A., Spyrou, E., and My-
lonas, P. (2019a). An image representation of skeletal
data for action recognition using convolutional neural
networks. In Proceedings of the 12th ACM Interna-
ICPRAM 2022 - 11th International Conference on Pattern Recognition Applications and Methods
376