as well as to investigate the performance of the pro-
posed methods on other benchmark datasets, includ-
ing cases from other application areas.
REFERENCES
Aster, R. C., Borchers, B., and Thurber, C. H. (2018). Pa-
rameter estimation and inverse problems. Elsevier.
Benjamini, Y. and Hochberg, Y. (1995). Controlling the
false discovery rate: a practical and powerful ap-
proach to multiple testing. Journal of the Royal statis-
tical society: series B (Methodological), 57(1):289–
300.
Breslow, N. (1970). A generalized kruskal-wallis test for
comparing k samples subject to unequal patterns of
censorship. Biometrika, 57(3):579–594.
Brier, G. W. and Allen, R. A. (1951). Verification of weather
forecasts. In Compendium of meteorology, pages 841–
848. Springer.
Buyske, S., Fagerstrom, R., and Ying, Z. (2000). A class
of weighted log-rank tests for survival data when the
event is rare. Journal of the American Statistical As-
sociation, 95(449):249–258.
Ciampi, A., Thiffault, J., Nakache, J.-P., and Asselain, B.
(1986). Stratification by stepwise regression, corre-
spondence analysis and recursive partition: a compar-
ison of three methods of analysis for survival data with
covariates. Computational statistics & data analysis,
4(3):185–204.
Cox, D. R. (1972). Regression models and life-tables. Jour-
nal of the Royal Statistical Society: Series B (Method-
ological), 34(2):187–202.
Friedman, J. H. (2001). Greedy function approximation: a
gradient boosting machine. Annals of statistics, pages
1189–1232.
Haider, H., Hoehn, B., Davis, S., and Greiner, R. (2020). Ef-
fective ways to build and evaluate individual survival
distributions. J. Mach. Learn. Res., 21:85–1.
Harrell Jr, F. E., Lee, K. L., and Mark, D. B. (1996).
Multivariable prognostic models: issues in develop-
ing models, evaluating assumptions and adequacy, and
measuring and reducing errors. Statistics in medicine,
15(4):361–387.
Hothorn, T., B
¨
uhlmann, P., Dudoit, S., Molinaro, A., and
Van Der Laan, M. J. (2006). Survival ensembles. Bio-
statistics, 7(3):355–373.
Ishwaran, H., Kogalur, U. B., Blackstone, E. H., and Lauer,
M. S. (2008). Random survival forests. The annals of
applied statistics, 2(3):841–860.
Kaplan, E. L. and Meier, P. (1958). Nonparametric esti-
mation from incomplete observations. Journal of the
American statistical association, 53(282):457–481.
Kaplan, M. M. (1996). Primary biliary cirrhosis. New Eng-
land Journal of Medicine, 335(21):1570–1580.
Klein, J. P. and Moeschberger, M. L. (1997). Statistics
for biology and health. Stat. Biol. Health, New York,
27238.
LeBlanc, M. and Crowley, J. (1993). Survival trees by good-
ness of split. Journal of the American Statistical As-
sociation, 88(422):457–467.
Lee, S.-H. (2021). Weighted log-rank statistics for acceler-
ated failure time model. Stats, 4(2):348–358.
Lin, D. (2007). On the breslow estimator. Lifetime data
analysis, 13(4):471–480.
Morgan, J. N. and Sonquist, J. A. (1963). Problems in the
analysis of survey data, and a proposal. Journal of the
American statistical association, 58(302):415–434.
Murphy, A. H. (1973). A new vector partition of the proba-
bility score. Journal of Applied Meteorology and Cli-
matology, 12(4):595–600.
Nelson, W. (1972). Theory and applications of hazard
plotting for censored failure data. Technometrics,
14(4):945–966.
Peto, R. and Peto, J. (1972). Asymptotically efficient rank
invariant test procedures. Journal of the Royal Statis-
tical Society: Series A (General), 135(2):185–198.
P
¨
olsterl, S. (2020). scikit-survival: A library for time-to-
event analysis built on top of scikit-learn. J. Mach.
Learn. Res., 21(212):1–6.
Refaeilzadeh, P., Tang, L., and Liu, H. (2009). Cross-
validation. Encyclopedia of database systems, 5:532–
538.
Schumacher, M. (1994). Rauschecker for the german breast
cancer study group, randomized 2× 2 trial evaluating
hormonal treatment and the duration of chemotherapy
in node-positive lbreast cancer patients. Journal of
Clinical Oncology, 12:2086–2093.
Tarone, R. E. and Ware, J. (1977). On distribution-free
tests for equality of survival distributions. Biometrika,
64(1):156–160.
ICPRAM 2022 - 11th International Conference on Pattern Recognition Applications and Methods
140