Toward a New Hybrid Intelligent Sentiment Analysis using CNN- LSTM and Cultural Algorithms
Imtiez Fliss
2022
Abstract
In this paper, we propose a new sentiment analysis approach based on the combination of deep learning and soft computing techniques. We use the GloVe word embeddings for feature extraction. For sentiment classification, we propose to combine CNN and LSTM to decide whether the sentiment among the text is positive or negative. To tune hyperparameters, this classifier is optimized using cultural algorithms.
DownloadPaper Citation
in Harvard Style
Fliss I. (2022). Toward a New Hybrid Intelligent Sentiment Analysis using CNN- LSTM and Cultural Algorithms. In Proceedings of the 14th International Conference on Agents and Artificial Intelligence - Volume 1: NLPinAI, ISBN 978-989-758-547-0, pages 467-477. DOI: 10.5220/0010990400003116
in Bibtex Style
@conference{nlpinai22,
author={Imtiez Fliss},
title={Toward a New Hybrid Intelligent Sentiment Analysis using CNN- LSTM and Cultural Algorithms},
booktitle={Proceedings of the 14th International Conference on Agents and Artificial Intelligence - Volume 1: NLPinAI,},
year={2022},
pages={467-477},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0010990400003116},
isbn={978-989-758-547-0},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 14th International Conference on Agents and Artificial Intelligence - Volume 1: NLPinAI,
TI - Toward a New Hybrid Intelligent Sentiment Analysis using CNN- LSTM and Cultural Algorithms
SN - 978-989-758-547-0
AU - Fliss I.
PY - 2022
SP - 467
EP - 477
DO - 10.5220/0010990400003116