plates. IEEE Transactions on Multimedia, 23:3768–
3777.
Jimenez-Bravo, D. M., Mutombo, P. M., Braem, B., and
Marquez-Barja, J. M. (2020). Applying Faster R-
CNN in extremely low-resolution thermal images for
people detection. In Proceedings of the IEEE/ACM In-
ternational Symposium on Distributed Simulation and
Real Time Applications, pages 1–4.
Kearns, M. and Roth, A. (2020). Ethical algorithm design.
ACM SIGecom Exchanges, 18(1):31–36.
Khan, G., Samyan, S., Khan, M. U. G., Shahid, M., and
Wahla, S. Q. (2020). A survey on analysis of hu-
man faces and facial expressions datasets. Interna-
tional Journal of Machine Learning and Cybernetics,
11(3):553–571.
Khan, M. M., Ilyas, M. U., Saleem, S., Alowibdi, J. S., and
Alkatheiri, J. S. (2019). Emerging computer vision
based machine learning issues for smart cities. In The
International Research and Innovation Forum, pages
315–322.
Kim, S., Park, S., and Kim, M. (2004). Image classifica-
tion into object/non-object classes. In Proceedings of
the International Conference on Image and Video Re-
trieval, pages 393–400.
Kishida, I., Chen, H., Baba, M., Jin, J., Amma, A., and
Nakayama, H. (2021). Object recognition with con-
tinual open set domain adaptation for home robot. In
Proceedings of the IEEE Winter Conference on Ap-
plications of Computer Vision (WACV), pages 1516–
1525.
Kohl, M. A., Baum, K., Langer, M., Oster, D., Speith, T.,
and Bohlender, D. (2019). Explainability as a non-
functional requirement. In Proceedings of the IEEE
International Requirements Engineering Conference,
pages 363–368.
Li, X., Ma, H., and Luo, X. (2020). Weaklier supervised
semantic segmentation with only one image level an-
notation per category. IEEE Transactions on Image
Processing, 290:128–141.
Li, Y., Peng, R., Li, M., and Fang, C. (2021). Research
on foreground Object recognition tracking and back-
ground restoration in AIoT era. In Proceedings of the
IEEE Asia-Pacific Conference on Image Processing,
Electronics and Computers, pages 292–298.
Lin, S., Wang, J., Xu, M., Zhao, H., and Chen, Z. (2021).
Topology aware object-level semantic mapping to-
wards more robust loop closure. IEEE Robotics and
Automation Letters, 6(4):7041–7048.
Liu, L., Tang, J., Liu, S., Yu, B., Xie, Y., and Gaudiot, J.-L.
(2021). P-RT: A runtime framework to enable energy-
efficient, real-time robotic vision applications on het-
erogeneous architectures. IEEE Computer, 54(4):14–
25.
Liu, Y., Zhang, D., and Lu, G. (2008). Region-based image
retrieval with high-level semantics using decision tree
learning. Pattern Recognition, 41(8):2554–2570.
Lu, X., Li, B., Yue, Y., Li, Q., and Yan, J. (2019). Grid
R-CNN. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 7363–7372.
Lv, H., Zhang, F., and Wang, R. (2021). Robust active con-
tour model using patch-based signed pressure force
and optimized fractional-order edge. IEEE Access,
9:8771–8785.
Mendling, J., Depaire, B., and Leopold, H. (2021). Theory
and practice of algorithm engineering. pages 1–18.
Mliki, H., Bouhlel, F., and M., H. (2020). Human activ-
ity recognition from UAV-captured video sequences.
Pattern Recognition, 100:1–13.
Montemayor, A. S., Pantrigo, J. J., and Salgado, L. (2015).
Special issue on real-time computer vision in smart
citiess. Journal of Real-Time Image Processing,
10:723–724.
Muralidhar, G. S., Bovik, A. C., Giese, J. D., Sampat, M. P.,
Whitman, G. J., Haygood, T. M., Stephens, T. W., and
Markey, M. K. (2010). Snakules: A model-based ac-
tive contour algorithm for the annotation of spicules
on mammography. IEEE Transactions on Medical
Imaging, 29(10):1768–1780.
Namiki, S., Yokoyama, K., Yachida, S., Shibata, T.,
Miyano, H., and Ishikawa, M. (2021). Online ob-
ject recognition using CNN-based algorithm on high-
speed camera imaging: Framework for fast and robust
high-speed camera object recognition based on popu-
lation data cleansing and data ensemble. In Proceed-
ings of the IEEE International Conference on Pattern
Recognition (ICPR), pages 2025–2032.
Narang, M., Rana, M., Patel, J., D’Souza, S., Onyechie, P.,
Berry, S., Tayefeh, M., and Barari, A. (2021). Fight-
ing COVID: An autonomous indoor cleaning robot
(AICR) supported by artificial intelligence and vision
for dynamic air disinfection. In Proceedings of the
IEEE International Conference on Industry Applica-
tions, pages 1146–1153.
Nasralla, M. M., Rehman, I. U., Sobnath, D., and Paiva, S.
(2019). Computer vision and deep learning-enabled
UAVs: Proposed use cases for visually impaired peo-
ple in a smart city. In Proceedings of IAPR Inter-
national Conference on Computer Analysis of Images
and Patterns (CAIP). LNCS 9256, Part I, pages 91–99.
Nowozin, S., Rother, C., Bagon, S., Sharp, T., Yao, B., and
Kohli, P. (2011). Decision tree fields. In Proceed-
ings of the IEEE International Conference on Com-
puter Vision, pages 1668–1675.
Olivares-Alarcos, A., Bessler, D., Khamis, A., Goncalves,
P., Habib, M., Bermejo-Alonso, J., Barreto, M., Diab,
M., Rosell, J., Quintas, J., Olszewska, J. I., Nakawala,
H., Pignaton de Freitas, E., Gyrard, A., Borgo, S.,
Alenya, G., Beetz, M., and Li, H. (2019). A re-
view and comparison of ontology-based approaches to
robot autonomy. The Knowledge Engineering Review,
34:1–38.
Olszewska, J. I. (2013). Semantic, automatic image anno-
tation based on multi-layered active contours and de-
cision trees. International Journal of Advanced Com-
puter Science and Applications, 4(8):201–208.
Olszewska, J. I. (2015a). Active contour based optical char-
acter recognition for automated scene understanding.
Neurocomputing, 161(C):65–71.
Olszewska, J. I. (2015b). “Where Is My Cup?” – Fully auto-
matic detection and recognition of textureless objects
Snakes in Trees: An Explainable Artificial Intelligence Approach for Automatic Object Detection and Recognition
1001