REFERENCES
Bar-Yam, Y. (2003). Dynamics of Complex Systems. West-
view Press.
Dressler, F. and Akan, O. B. (2010a). Bio-inspired network-
ing: from theory to practice. IEEE Communications
Magazine, 48(11):176–183.
Dressler, F. and Akan, O. B. (2010b). A survey on bio-
inspired networking. Computer networks, 54(6):881–
900.
Franceschetti, M., Dousse, O., Tse, D. N., and Thiran, P.
(2007). Closing the gap in the capacity of random
wireless networks via percolation theory. IEEE Trans-
actions on Information Theory, 53(ARTICLE):1009–
1018.
Gierer, A. and Meinhardt, H. (1972). A theory of biological
pattern formation. Kybernetik, 12(1):30–39.
Gray, P. and Scott, S. K. (1990). Chemical oscillations and
instabilities: non-linear chemical kinetics. Oxford:
Oxford Science.
Henderson, T. C., Luthy, K., and Grant, E. (2014).
Reaction-diffusion computation in wireless sensor
networks. Jounral of Unconventional Computing.
Henderson, T. C., Venkataraman, R., and Choikim, G.
(2004). Reaction-diffusion patterns in smart sen-
sor networks. In IEEE International Conference
on Robotics and Automation, 2004. Proceedings.
ICRA’04. 2004, volume 1, pages 654–658. IEEE.
Hyodo, K., Wakamiya, N., Nakaguchi, E., Murata, M.,
Kubo, Y., and Yanagihara, K. (2007). Experiments
and considerations on reaction-diffusion based pattern
generation in a wireless sensor network. In 2007 IEEE
International Symposium on a World of Wireless, Mo-
bile and Multimedia Networks, pages 1–6. IEEE.
Kondo, S. and Asai, R. (1995). A reaction–diffusion wave
on the skin of the marine angelfish pomacanthus. Na-
ture, 376(6543):765–768.
Lowe, D. and Miorandi, D. (2009). All roads lead to rome:
Data highways for dense wireless sensor networks. In
International Conference on Sensor Systems and Soft-
ware, pages 189–205. Springer.
Meinhardt, H. (1982). Models of biological pattern forma-
tion. Academic Press, London.
Miorandi, D., Lowe, D., and Gomez, K. M. (2009).
Activation–inhibition–based data highways for wire-
less sensor networks. In International Conference
on Bio-Inspired Models of Network, Information, and
Computing Systems, pages 95–102. Springer.
Nakano, T. (2010). Biologically inspired network systems:
A review and future prospects. IEEE Transactions on
Systems, Man, and Cybernetics, Part C (Applications
and Reviews), 41(5):630–643.
Nakas, C., Kandris, D., and Visvardis, G. (2020). Energy
efficient routing in wireless sensor networks: a com-
prehensive survey. Algorithms, 13(3):72.
Pearson, J. E. (1993). Complex patterns in a simple system.
Science, 261(5118):189–192.
Ren, H. and Meng, M. Q.-H. (2006). Biologically inspired
approaches for wireless sensor networks. In 2006 In-
ternational Conference on Mechatronics and Automa-
tion, pages 762–768. IEEE.
Singh, A., Sharma, S., and Singh, J. (2021). Nature-
inspired algorithms for wireless sensor networks: A
comprehensive survey. Computer Science Review,
39:100342.
Tsetlin, M. (1973). Automaton theory and modeling of bio-
logical systems: by ML Tsetlin. Translated by Scitran
(Scientific Translation Service)., volume 102. Aca-
demic Press.
Tung, B. and Kleinrock, L. (1993). Distributed control
methods. In High Performance Distributed Comput-
ing, 1993., Proceedings the 2nd International Sympo-
sium on, pages 206–215. IEEE.
Tung, B. and Kleinrock, L. (1996). Using finite state au-
tomata to produce self-optimization and self-control.
Parallel and Distributed Systems, IEEE Transactions
on, 7(4):439–448.
Tung, Y.-C. (1994). Distributed control using finite state
automata.
Turing, A. M. (1952). The chemical basis of morphogen-
esis. Philosophical Transactions of the Royal Society
of London. Series B, Biological Sciences, 237(64):37–
72.
Varga, A. (2010). Omnet++. In Modeling and tools for
network simulation, pages 35–59. Springer.
Wakamiya, N., Hyodo, K., and Murata, M. (2008).
Reaction-diffusion based topology self-organization
for periodic data gathering in wireless sensor net-
works. In 2008 Second IEEE International Confer-
ence on Self-Adaptive and Self-Organizing Systems,
pages 351–360. IEEE.
Wu, S.-Y., Brown, T., and Wang, H.-T. (2020). A reaction-
diffusion and g
¨
ur game based routing algorithm for
wireless sensor networks. In International Conference
on Mobile, Secure, and Programmable Networking,
pages 223–234. Springer.
Yamamoto, L. and Miorandi, D. (2010). Evaluating the ro-
bustness of activator-inhibitor models for cluster head
computation. In International Conference on Swarm
Intelligence, pages 143–154. Springer.
Yamamoto, L., Miorandi, D., Collet, P., and Banzhaf, W.
(2011). Recovery properties of distributed cluster
head election using reaction–diffusion. Swarm Intel-
ligence, 5(3):225–255.
Zheng, C. and Sicker, D. C. (2013). A survey on bio-
logically inspired algorithms for computer network-
ing. IEEE Communications Surveys & Tutorials,
15(3):1160–1191.
SENSORNETS 2022 - 11th International Conference on Sensor Networks
238