Henry, J. (2014). Static Analysis by Abstract Interpretation
and Decision Procedures. PhD thesis, Universit
´
e de
Grenoble.
Jacoby, Y., Barrett, C., and Katz, G. (2020). Verifying recur-
rent neural networks using invariant inference. In In-
ternational Symposium on Automated Technology for
Verification and Analysis, pages 57–74. Springer.
Julian, K. D., Lopez, J., Brush, J. S., Owen, M. P., and
Kochenderfer, M. J. (2016). Policy compression
for aircraft collision avoidance systems. In 2016
IEEE/AIAA 35th Digital Avionics Systems Conference
(DASC), pages 1–10. IEEE.
Katz, G., Barrett, C., Dill, D. L., Julian, K., and Kochender-
fer, M. J. (2017). Reluplex: An efficient smt solver for
verifying deep neural networks. In International Con-
ference on Computer Aided Verification, pages 97–
117. Springer.
Ko, C.-Y., Lyu, Z., Weng, L., Daniel, L., Wong, N., and Lin,
D. (2019). Popqorn: Quantifying robustness of recur-
rent neural networks. In International Conference on
Machine Learning, pages 3468–3477. PMLR.
LeCun, Y. (1998). The mnist database of handwritten digits.
http://yann. lecun. com/exdb/mnist/.
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al. (1998).
Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86(11):2278–2324.
Li, G., Yang, Y., Qu, X., Cao, D., and Li, K. (2021). A
deep learning based image enhancement approach for
autonomous driving at night. Knowledge-Based Sys-
tems, 213:106617.
Li, J., Liu, J., Yang, P., Chen, L., Huang, X., and Zhang,
L. (2019). Analyzing deep neural networks with sym-
bolic propagation: towards higher precision and faster
verification. In International Static Analysis Sympo-
sium, pages 296–319. Springer.
Li, R., Li, J., Huang, C.-C., Yang, P., Huang, X., Zhang,
L., Xue, B., and Hermanns, H. (2020). Prodeep: a
platform for robustness verification of deep neural net-
works. In Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and
Symposium on the Foundations of Software Engineer-
ing, pages 1630–1634.
Lu, P., Liu, C., Mao, X., Zhao, Y., Wang, H., Zhang, H., and
Guo, L. (2021). Few-shot pulse wave contour classifi-
cation based on multi-scale feature extraction. Scien-
tific Reports, 11(1):1–11.
Raghunathan, A., Steinhardt, J., and Liang, P. (2018). Cer-
tified defenses against adversarial examples. arXiv
preprint arXiv:1801.09344.
Ryou, W., Chen, J., Balunovic, M., Singh, G., Dan, A., and
Vechev, M. (2021). Scalable polyhedral verification
of recurrent neural networks. In International Confer-
ence on Computer Aided Verification, pages 225–248.
Springer.
Shen, D., Wu, G., and Suk, H.-I. (2017). Deep learning in
medical image analysis. Annual review of biomedical
engineering, 19:221–248.
Singh, G., Ganvir, R., P
¨
uschel, M., and Vechev, M. (2019a).
Beyond the single neuron convex barrier for neural
network certification.
Singh, G., Gehr, T., Mirman, M., P
¨
uschel, M., and Vechev,
M. T. (2018a). Fast and effective robustness certifica-
tion. NeurIPS, 1(4):6.
Singh, G., Gehr, T., P
¨
uschel, M., and Vechev, M. (2018b).
Boosting robustness certification of neural networks.
In International Conference on Learning Representa-
tions.
Singh, G., Gehr, T., P
¨
uschel, M., and Vechev, M. (2019b).
An abstract domain for certifying neural networks.
Proceedings of the ACM on Programming Languages,
3(POPL):1–30.
Singh, G., Gehr, T., P
¨
uschel, M., and Vechev, M. T. (2019c).
Boosting robustness certification of neural networks.
In ICLR (Poster).
Tjeng, V., Xiao, K., and Tedrake, R. (2017). Evaluating
robustness of neural networks with mixed integer pro-
gramming. arXiv preprint arXiv:1711.07356.
Wang, S., Pei, K., Whitehouse, J., Yang, J., and Jana, S.
(2018a). Efficient formal safety analysis of neural net-
works. arXiv preprint arXiv:1809.08098.
Wang, S., Pei, K., Whitehouse, J., Yang, J., and Jana,
S. (2018b). Formal security analysis of neural net-
works using symbolic intervals. In 27th {USENIX}
Security Symposium ({USENIX} Security 18), pages
1599–1614.
Weng, L., Zhang, H., Chen, H., Song, Z., Hsieh, C.-J.,
Daniel, L., Boning, D., and Dhillon, I. (2018). To-
wards fast computation of certified robustness for relu
networks. In International Conference on Machine
Learning, pages 5276–5285. PMLR.
Wu, M. and Kwiatkowska, M. (2020). Robustness guaran-
tees for deep neural networks on videos. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 311–320.
ICAART 2022 - 14th International Conference on Agents and Artificial Intelligence
1010