4 CONCLUSIONS
In this paper we presented a light estimation tech-
nique particularly designed for a multi-camera in-
spection system in industrial environments.
Our approach exploits the observed intensities in the
spherical coordinates to easily compute an initial
coarse initialisation with a 3D accumulator, then the
optimal light position is computed via an optimisation
procedure.
Both synthetic and real-world experiments demon-
strated the stability and the precision in the localisa-
tion of multiple light sources.
REFERENCES
Brooks, M. J. and Horn, B. K. (1985). Shape and source
from shading.
Cao, X. and Shah, M. (2005). Camera calibration and light
source estimation from images with shadows. In 2005
IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition (CVPR’05), volume 2,
pages 918–923. IEEE.
Debevec, P. (2008). Rendering synthetic objects into real
scenes: Bridging traditional and image-based graphics
with global illumination and high dynamic range pho-
tography. In ACM SIGGRAPH 2008 classes, pages
1–10.
Elizondo, D. A., Zhou, S.-M., and Chrysostomou, C.
(2017). Light source detection for digital images in
noisy scenes: a neural network approach. Neural
Computing and Applications, 28(5):899–909.
Fassold, H., Danzl, R., Schindler, K., and Bischof, H.
(2004). Reconstruction of archaeological finds using
shape from stereo and shape from shading. In Proc.
9th Computer Vision Winter Workshop, Piran, Slove-
nia, pages 21–30.
Gardner, M.-A., Sunkavalli, K., Yumer, E., Shen, X., Gam-
baretto, E., Gagn
´
e, C., and Lalonde, J.-F. (2017).
Learning to predict indoor illumination from a single
image. arXiv preprint arXiv:1704.00090.
Jiddi, S., Robert, P., and Marchand, E. (2016). Reflectance
and illumination estimation for realistic augmenta-
tions of real scenes. In 2016 IEEE International Sym-
posium on Mixed and Augmented Reality (ISMAR-
Adjunct), pages 244–249. IEEE.
K
´
an, P. and Kafumann, H. (2019). Deeplight: light source
estimation for augmented reality using deep learning.
The Visual Computer, 35(6):873–883.
Kim, T., Seo, Y.-D., and Hong, K.-S. (2001). Improving ar
using shadows arising from natural illumination dis-
tribution in video sequences. In Proceedings Eighth
IEEE International Conference on Computer Vision.
ICCV 2001, volume 2, pages 329–334. IEEE.
Koppal, S. J. (2014). Lambertian Reflectance, pages 441–
443. Springer US, Boston, MA.
Langer, M. S. and Zucker, S. W. (1997). What is a light
source? In Proceedings of IEEE Computer Society
Conference on Computer Vision and Pattern Recogni-
tion, pages 172–178. IEEE.
Li, Y., Lu, H., Shum, H.-Y., et al. (2003). Multiple-cue il-
lumination estimation in textured scenes. In Proceed-
ings Ninth IEEE International Conference on Com-
puter Vision, pages 1366–1373. IEEE.
Nocedal, J. and Wright, S. (2006). Numerical optimization.
Springer Science & Business Media.
Pentland, A. P. (1982). Finding the illuminant direction.
Josa, 72(4):448–455.
Pistellato, M., Albarelli, A., Bergamasco, F., and Torsello,
A. (2016). Robust joint selection of camera orienta-
tions and feature projections over multiple views. vol-
ume 0, pages 3703–3708.
Pistellato, M., Bergamasco, F., Albarelli, A., and Torsello,
A. (2015). Dynamic optimal path selection for 3d tri-
angulation with multiple cameras. Lecture Notes in
Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioin-
formatics), 9279:468–479. cited By 3.
Pistellato, M., Cosmo, L., Bergamasco, F., Gasparetto, A.,
and Albarelli, A. (2018). Adaptive albedo compen-
sation for accurate phase-shift coding. volume 2018-
August, pages 2450–2455.
Pistellato, M., Traviglia, A., and Bergamasco, F. (2020).
Geolocating time: Digitisation and reverse engineer-
ing of a roman sundial. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artifi-
cial Intelligence and Lecture Notes in Bioinformatics),
12536 LNCS:143–158.
Powell, M. W., Sarkar, S., and Goldgof, D. (2000). Calibra-
tion of light sources. In Proceedings IEEE Conference
on Computer Vision and Pattern Recognition. CVPR
2000 (Cat. No. PR00662), volume 2, pages 263–269.
IEEE.
Powell, M. W., Sarkar, S., and Goldgof, D. (2001). A simple
strategy for calibrating the geometry of light sources.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 23(9):1022–1027.
Samaras, D. and Metaxas, D. (2003). Incorporating illu-
mination constraints in deformable models for shape
from shading and light direction estimation. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 25(2):247–264.
Sato, I., Sato, Y., and Ikeuchi, K. (1999a). Acquiring a radi-
ance distribution to superimpose virtual objects onto
a real scene. IEEE transactions on visualization and
computer graphics, 5(1):1–12.
Sato, I., Sato, Y., and Ikeuchi, K. (1999b). Illumination dis-
tribution from brightness in shadows: adaptive esti-
mation of illumination distribution with unknown re-
flectance properties in shadow regions. In Proceed-
ings of the Seventh IEEE International Conference on
Computer Vision, volume 2, pages 875–882. IEEE.
Takai, T., Maki, A., Niinuma, K., and Matsuyama, T.
(2009). Difference sphere: an approach to near light
source estimation. Computer Vision and Image Un-
derstanding, 113(9):966–978.
A Light Source Calibration Technique for Multi-camera Inspection Devices
493