Aided Systems Theory – EUROCAST 2019 (p. 263–
270). Springer International Publishing. https://
doi.org/10.1007/978-3-030-45093-9_32
Cano, P. O., Mejia, A. M., De Gyves Avila, S., Dominguez,
G. E. Z., Moreno, I. S., & Lepe, A. N. (2021). A
Taxonomy on Continuous Integration and Deployment
Tools and Frameworks. In J. Mejia, M. Muñoz, Á.
Rocha, & Y. Quiñonez (Orgs.), New Perspectives in
Software Engineering (p. 323–336). Springer
International Publishing. https://doi.org/10.1007/978-
3-030-63329-5_22
Cardoso Silva, L., Rezende Zagatti, F., Silva Sette, B.,
Nildaimon dos Santos Silva, L., Lucrédio, D., Furtado
Silva, D., & de Medeiros Caseli, H. (2020).
Benchmarking Machine Learning Solutions in
Production. 2020 19th IEEE International Conference on
Machine Learning and Applications (ICMLA), 626–633.
https://doi.org/10.1109/ICMLA51294.2020.00104
Chen, A., Chow, A., Davidson, A., DCunha, A., Ghodsi, A.,
Hong, S. A., Konwinski, A., Mewald, C., Murching, S.,
Nykodym, T., Ogilvie, P., Parkhe, M., Singh, A., Xie,
F., Zaharia, M., Zang, R., Zheng, J., & Zumar, C.
(2020). Developments in MLflow: A System to
Accelerate the Machine Learning Lifecycle.
Proceedings of the Fourth International Workshop on
Data Management for End-to-End Machine Learning.
https://doi.org/10.1145/3399579.3399867
Chen, Z., Cao, Y., Liu, Y., Wang, H., Xie, T., & Liu, X.
(2020). A Comprehensive Study on Challenges in
Deploying Deep Learning Based Software.
Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and
Symposium on the Foundations of Software
Engineering, 750–762. https://doi.org/10.1145/3368
089.3409759
Cruzes, D. S., & Dyba, T. (2011). Recommended Steps for
Thematic Synthesis in Software Engineering. 2011
International Symposium on Empirical Software
Engineering and Measurement, 275–284.
https://doi.org/10.1109/ESEM.2011.36
Dang, Y., Lin, Q., & Huang, P. (2019). AIOps: Real-World
Challenges and Research Innovations. 2019
IEEE/ACM 41st International Conference on Software
Engineering: Companion Proceedings (ICSE-
Companion), 4–5. https://doi.org/10.1109/ICSE-
Companion.2019.00023
Dhanorkar, S., Wolf, C. T., Qian, K., Xu, A., Popa, L., &
Li, Y. (2021). Who Needs to Know What, When?:
Broadening the Explainable AI (XAI) Design Space by
Looking at Explanations Across the AI Lifecycle.
Designing Interactive Systems Conference 2021, 1591–
1602. https://doi.org/10.1145/3461778.3462131
Figalist, I., Elsner, C., Bosch, J., & Olsson, H. H. (2020).
An End-to-End Framework for Productive Use of
Machine Learning in Software Analytics and Business
Intelligence Solutions. In M. Morisio, M. Torchiano, &
A. Jedlitschka (Orgs.), Product-Focused Software
Process Improvement (p. 217–233). Springer
International Publishing. https://doi.org/10.1007/978-
3-030-64148-1_14
Giray, G. (2021). A software engineering perspective on
engineering machine learning systems: State of the art
and challenges. Journal of Systems and Software, 180,
111031. https://doi.org/10.1016/j.jss.2021.111031
Granlund, T., Kopponen, A., Stirbu, V., Myllyaho, L., &
Mikkonen, T. (2021). MLOps Challenges in Multi-
Organization Setup: Experiences from Two Real-World
Cases. 2021 IEEE/ACM 1st Workshop on AI
Engineering - Software Engineering for AI (WAIN), 82–
88. https://doi.org/10.1109/WAIN52551. 2021 .00019
Ismail, B. I., Khalid, M. F., Kandan, R., & Hoe, O. H.
(2019). On-Premise AI Platform: From DC to Edge.
Proceedings of the 2019 2nd International Conference
on Robot Systems and Applications, 40–45. https://
doi.org/10.1145/3378891.3378899
Janardhanan, P. S. (2020). Project repositories for machine
learning with TensorFlow. Procedia Computer Science,
171,
188–196.https://doi.org/10.1016/j.procs.2020.04.020
Kang, Z., Catal, C., & Tekinerdogan, B. (2020). Machine
learning applications in production lines: A systematic
literature review. Computers & Industrial Engineering,
149, 106773. https://doi.org/10.1016/j.cie.2020.106773
Karlaš, B., Interlandi, M., Renggli, C., Wu, W., Zhang, C.,
Mukunthu Iyappan Babu, D., Edwards, J., Lauren, C.,
Xu, A., & Weimer, M. (2020). Building Continuous
Integration Services for Machine Learning. In
Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data
Mining (p. 2407–2415). Association for Computing
Machinery. https://doi.org/10.1145/3394486.3403290
Kitchenham, B. (2004). Procedures for Performing
Systematic Reviews. 33.
Kitchenham, B.A., Budgen, D., Brereton, P. (2015).
Evidence-Based Software Engineering and Systematic
Reviews, vol. 4. CRC press.
Liu, Y., Ling, Z., Huo, B., Wang, B., Chen, T., & Mouine,
E. (2020). Building A Platform for Machine Learning
Operations from Open Source Frameworks. IFAC-
PapersOnLine, 53(5), 704–709. https://doi.org/10.1016
/j.ifacol.2021.04.161
López García, Á., De Lucas, J. M., Antonacci, M., Zu
Castell, W., David, M., Hardt, M., Lloret Iglesias, L.,
Moltó, G., Plociennik, M., Tran, V., Alic, A. S.,
Caballer, M., Plasencia, I. C., Costantini, A.,
Dlugolinsky, S., Duma, D. C., Donvito, G., Gomes, J.,
Heredia Cacha, I., … Wolniewicz, P. (2020). A Cloud-
Based Framework for Machine Learning Workloads
and Applications. IEEE Access, 8, 18681–18692.
https://doi.org/10.1109/ACCESS.2020.2964386
Lwakatare, L. E., Crnkovic, I., & Bosch, J. (2020). DevOps
for AI – Challenges in Development of AI-enabled
Applications. 2020 International Conference on
Software, Telecommunications and Computer
Networks (SoftCOM), 1–6. https://doi.org/10.
23919/SoftCOM50211.2020.9238323
Lwakatare, L. E., Crnkovic, I., Rånge, E., & Bosch, J.
(2020). From a Data Science Driven Process to a
Continuous Delivery Process for Machine Learning
Systems. In M. Morisio, M. Torchiano, & A.
Jedlitschka (Orgs.), Product-Focused Software Process