Aided Systems Theory – EUROCAST 2019 (p. 263–
270).  Springer  International  Publishing.  https:// 
doi.org/10.1007/978-3-030-45093-9_32 
Cano, P. O., Mejia, A. M., De Gyves Avila, S., Dominguez, 
G.  E.  Z.,  Moreno,  I.  S.,  &  Lepe,  A.  N.  (2021).  A 
Taxonomy on Continuous Integration and Deployment 
Tools  and  Frameworks.  In  J.  Mejia,  M.  Muñoz,  Á. 
Rocha,  &  Y.  Quiñonez  (Orgs.),  New  Perspectives in 
Software  Engineering  (p.  323–336).  Springer 
International  Publishing.  https://doi.org/10.1007/978-
3-030-63329-5_22 
Cardoso  Silva,  L.,  Rezende  Zagatti,  F.,  Silva  Sette,  B., 
Nildaimon dos Santos Silva, L., Lucrédio, D., Furtado 
Silva,  D.,  &  de  Medeiros  Caseli,  H.  (2020). 
Benchmarking  Machine  Learning  Solutions  in 
Production. 2020 19th IEEE International Conference on 
Machine Learning and Applications (ICMLA), 626–633. 
https://doi.org/10.1109/ICMLA51294.2020.00104 
Chen, A., Chow, A., Davidson, A., DCunha, A., Ghodsi, A., 
Hong, S. A., Konwinski, A., Mewald, C., Murching, S., 
Nykodym, T., Ogilvie, P., Parkhe, M., Singh, A., Xie, 
F.,  Zaharia,  M.,  Zang,  R.,  Zheng,  J.,  &  Zumar,  C. 
(2020).  Developments  in  MLflow:  A  System  to 
Accelerate  the  Machine  Learning  Lifecycle. 
Proceedings of the Fourth International Workshop on 
Data Management for End-to-End Machine Learning. 
https://doi.org/10.1145/3399579.3399867 
Chen, Z., Cao, Y., Liu, Y., Wang, H., Xie, T., & Liu, X. 
(2020).  A  Comprehensive  Study  on  Challenges  in 
Deploying  Deep  Learning  Based  Software. 
Proceedings  of  the  28th  ACM  Joint  Meeting  on 
European  Software  Engineering  Conference  and 
Symposium  on  the  Foundations  of  Software 
Engineering,  750–762.  https://doi.org/10.1145/3368 
089.3409759 
Cruzes, D. S., & Dyba, T. (2011). Recommended Steps for 
Thematic  Synthesis  in  Software  Engineering.  2011 
International  Symposium  on  Empirical  Software 
Engineering  and  Measurement,  275–284. 
https://doi.org/10.1109/ESEM.2011.36 
Dang, Y., Lin, Q., & Huang, P. (2019). AIOps: Real-World 
Challenges  and  Research  Innovations.  2019 
IEEE/ACM 41st International Conference on Software 
Engineering:  Companion  Proceedings  (ICSE-
Companion),  4–5.  https://doi.org/10.1109/ICSE-
Companion.2019.00023 
Dhanorkar, S., Wolf, C. T., Qian, K., Xu, A., Popa, L., & 
Li,  Y.  (2021).  Who  Needs  to  Know  What,  When?: 
Broadening the Explainable AI (XAI) Design Space by 
Looking  at  Explanations  Across  the  AI  Lifecycle. 
Designing Interactive Systems Conference 2021, 1591–
1602. https://doi.org/10.1145/3461778.3462131 
Figalist, I., Elsner, C., Bosch, J., & Olsson, H. H. (2020). 
An  End-to-End  Framework  for  Productive  Use  of 
Machine Learning in Software Analytics and Business 
Intelligence Solutions. In M. Morisio, M. Torchiano, & 
A.  Jedlitschka  (Orgs.),  Product-Focused  Software 
Process  Improvement  (p.  217–233).  Springer 
International  Publishing.  https://doi.org/10.1007/978-
3-030-64148-1_14 
Giray,  G.  (2021).  A  software  engineering  perspective  on 
engineering machine learning systems: State of the art 
and challenges. Journal of Systems and Software, 180, 
111031. https://doi.org/10.1016/j.jss.2021.111031 
Granlund, T.,  Kopponen, A.,  Stirbu, V., Myllyaho, L., & 
Mikkonen,  T.  (2021).  MLOps  Challenges  in  Multi-
Organization Setup: Experiences from Two Real-World 
Cases.  2021  IEEE/ACM  1st  Workshop  on  AI 
Engineering - Software Engineering for AI (WAIN), 82–
88. https://doi.org/10.1109/WAIN52551. 2021 .00019 
Ismail, B. I., Khalid, M. F., Kandan, R., & Hoe, O. H. 
(2019).  On-Premise  AI  Platform:  From  DC  to  Edge. 
Proceedings of the 2019 2nd International Conference 
on  Robot  Systems  and  Applications,  40–45.  https:// 
doi.org/10.1145/3378891.3378899 
Janardhanan, P. S. (2020). Project repositories for machine 
learning with TensorFlow. Procedia Computer Science, 
171,
 188–196.https://doi.org/10.1016/j.procs.2020.04.020 
Kang, Z., Catal, C., & Tekinerdogan, B. (2020). Machine 
learning applications in production lines: A systematic 
literature review. Computers & Industrial Engineering, 
149, 106773. https://doi.org/10.1016/j.cie.2020.106773 
Karlaš, B., Interlandi, M., Renggli, C., Wu, W., Zhang, C., 
Mukunthu Iyappan Babu, D., Edwards, J., Lauren, C., 
Xu,  A.,  &  Weimer,  M.  (2020).  Building  Continuous 
Integration  Services  for  Machine  Learning.  In 
Proceedings of the 26th ACM SIGKDD International 
Conference  on  Knowledge  Discovery  &  Data 
Mining  (p.  2407–2415).  Association  for  Computing 
Machinery. https://doi.org/10.1145/3394486.3403290 
Kitchenham,  B.  (2004).  Procedures  for  Performing 
Systematic Reviews. 33. 
Kitchenham,  B.A.,  Budgen,  D.,  Brereton,  P.  (2015). 
Evidence-Based Software Engineering and Systematic 
Reviews, vol. 4. CRC press. 
Liu, Y., Ling, Z., Huo, B., Wang, B., Chen, T., & Mouine, 
E. (2020). Building A Platform for Machine Learning 
Operations  from  Open  Source  Frameworks.  IFAC-
PapersOnLine, 53(5), 704–709. https://doi.org/10.1016 
/j.ifacol.2021.04.161 
López  García,  Á.,  De  Lucas,  J.  M.,  Antonacci,  M.,  Zu 
Castell, W., David, M., Hardt, M., Lloret Iglesias, L., 
Moltó,  G.,  Plociennik,  M.,  Tran,  V.,  Alic,  A.  S., 
Caballer,  M.,  Plasencia,  I.  C.,  Costantini,  A., 
Dlugolinsky, S., Duma, D. C., Donvito, G., Gomes, J., 
Heredia Cacha, I., … Wolniewicz, P. (2020). A Cloud-
Based  Framework  for  Machine  Learning  Workloads 
and  Applications.  IEEE  Access,  8,  18681–18692. 
https://doi.org/10.1109/ACCESS.2020.2964386 
Lwakatare, L. E., Crnkovic, I., & Bosch, J. (2020). DevOps 
for  AI  –  Challenges  in  Development  of  AI-enabled 
Applications.  2020  International  Conference  on 
Software,  Telecommunications  and  Computer 
Networks  (SoftCOM),  1–6.  https://doi.org/10. 
23919/SoftCOM50211.2020.9238323 
Lwakatare,  L.  E.,  Crnkovic,  I.,  Rånge,  E.,  &  Bosch,  J. 
(2020).  From  a  Data  Science  Driven  Process  to  a 
Continuous  Delivery  Process  for  Machine  Learning 
Systems. In M. Morisio, M. Torchiano, & A. 
Jedlitschka (Orgs.), Product-Focused Software Process