The data collection of the SAE L2 project was
done by TNO with financial and in-kind contributions
from the Dutch Ministry of Infrastructure and Water
Management, Rijkswaterstaat, RDW, AON, PON
Netherlands, BMW Netherlands and Germany, and
Athlon Carlease.
REFERENCES
Ayres, G., Wilson, B., & LeBlanc, J. (2004). Method for
Identifying Vehicle Movements for Analysis of Field
Operational Test Data. Transportation Research
Record: Journal of the Transportation Research Board,
1886(1), 92–100. https://doi.org/10.3141/1886-12
Bakhit, P. R., Osman, O. A., & Ishak, S. (2017). Detecting
Imminent Lane Change Maneuvers in Connected
Vehicle Environments. Transportation Research
Record: Journal of the Transportation Research Board,
2645(1), 168–175. https://doi.org/10.3141/2645-18
Bogard, S., & Fancher, P. (1999). Analysis of Data on
Speed-Change and Lane-Change Behavior in Manual
and ACC Driving ( DTNH22-94-Y-47016). Ann Arbor,
MI: University of Michigan Transportation Research
Institute.
Chinchor, N., & Sundheim, B. (1993). MUC-5 Evaluation
Metrics. In Fifth Message Understanding Conference
(MUC-5): Proceedings of a Conference Held in
Baltimore, Maryland, August 25-27, 1993 (pp. 69-78).
Baltimore, Maryland: August 25-27, 1993. Morgan
Kaufmann Publishers, Inc. https://aclanthology.org/
M93-1007.pdf
CROW (2013). Handboek Wegontwerp 2013 -
Gebiedsontsluitingswegen (Publicatie 330). Ede, The
Netherlands: CROW.
Das, A., Khan, M. N., & Ahmed, M. M. (2020). Detecting
lane change maneuvers using SHRP2 naturalistic
driving data: A comparative study machine learning
techniques. Accident Analysis & Prevention, 142,
105578. https://doi.org/10.1016/j.aap.2020.105578
Efron, B., & Tibshirani, R. J. (1994). An Introduction to the
Bootstrap. Taylor & Francis.
FESTA. (2018). FESTA handbook (Version 7). Updated
and maintained by FOT-Net and CARTRE.
https://connectedautomateddriving.eu/wp-content/
uploads/2019/01/FESTA-Handbook-Version-7.pdf
Hiller, J., Koskinen, S., Berta, R., Osman, N., Nagy, B.,
Bellotti, F., Rahman, A., Svanberg, E., Weber, H.,
Arnold, E. H., Dianati, M., & De Gloria, A. (2020). The
L3Pilot data management toolchain for a level 3 vehicle
automation pilot. Electronics (Switzerland) 9(5).
https://doi.org/10.3390/electronics9050809
Hou, Y., Edara, P., & Sun, C. (2015). Situation assessment
and decision making for lane change assistance using
ensemble learning methods. Expert Systems with
Applications, 42(8), 3875–3882. https://doi.org/
10.1016/j.eswa.2015.01.029
Keller, M., Bengio, S., & Wong, S. (2005). Benchmarking
Non-Parametric Statistical Tests. In Annual Conference
on Neural Information Processing Systems, NIPS 2005
(pp. 651-658).
Knoop, V. L., Hoogendoorn, S. P., Shiomi, Y., & Buisson,
C. (2012). Quantifying the Number of Lane Changes in
Traffic. Transportation Research Record: Journal of
the Transportation Research Board, 2278(1), 31–41.
https://doi.org/10.3141/2278-04
Koziol, J., Inman, V., Carter, M., Hitz, J., Najm, W., Chen,
S., Lam, A., Penic, M., Jensen, M., Baker, M.,
Robinson, M., & Goodspeed, C. (1999). Evaluation of
the Intelligent Cruise Control system. Volume II -
Appendices (DOT HS 808 969). Cambridge, MA: U.S.
Department of Transportation.
Li, X., Wang, W., Zhang, Z., & Rötting, M. (2018). Effects
of feature selection on lane-change maneuver
recognition: an analysis of naturalistic driving data.
Journal of Intelligent and Connected Vehicles, 1(3),
85–98. https://doi.org/10.1108/jicv-09-2018-0010
Mandalia, H. M., & Salvucci, M. D. D. (2005). Using
Support Vector Machines for Lane-Change Detection.
Proceedings of the Human Factors and Ergonomics
Society Annual Meeting, 49(22), 1965–1969.
https://doi.org/10.1177/154193120504902217
Miller R., & Srinivasan G. (2005). Determination of lane
change maneuvers using naturalistic driving data. Proc.
19th Int. Tech. Conf. Enhanc. Saf. Veh. (pp. 1–5).
RWS (2019). Richtlijn Ontwerp Autosnelwegen 2019
(ROA2019, Versie 1.0). Den Haag: Rijkswaterstaat.
Salvucci, D. D. (2004). Inferring Driver Intent: A Case
Study in Lane-Change Detection. Proceedings of the
Human Factors and Ergonomics Society Annual
Meeting, 48(19), 2228–2231. https://doi.org/10.1177/
154193120404801905
Schermers, G., & Van Petegem, J. W. H. (2013).
Veiligheidseisen aan het dwarsprofiel van
gebiedsontsluitingswegen met limiet 80 km/uur (report
D-2013-2). Leidschendam, The Netherlands: SWOV.
Stapel, J., Happee, R., Christoph, M., van Nes, N., &
Martens, M. (2021). Exploration of the impact of SAE2
automation on driving behaviour: a naturalistic driving
study. In J. C. J. Stapel (ed.), On-road assessment of
driver workload and awareness in automated vehicles
(pp. 39-72). TU Delft. https://doi.org/10.4233/
uuid:746f5f73-1876-4371-b142-f0f3117ded6a
Sun, L., Zhan, W., Tomizuka, M., & Dragan, A. D. (2018).
Courteous Autonomous Cars. 2018 IEEE/RSJ
International Conference on Intelligent Robots and
Systems (pp. 663-670). https://doi.org/10.1109/
IROS.2018.8593969
You, F., Zhang, R., Lie, G., Wang, H., Wen, H., & Xu, J.
(2015). Trajectory planning and tracking control for
autonomous lane change maneuver based on the
cooperative vehicle infrastructure system. Expert
Systems with Applications, 42(14), 5932–5946.
https://doi.org/10.1016/j.eswa.2015.03.022
Xuan, Y., & Coifman, B. (2006). Lane change maneuver
detection from probe vehicle DGPS data. IEEE Intell.
Transp. Syst. Conf. (pp. 624–629).