Anderson, H., Boodhwani, A., & Baker, R. S. (2019).
Assessing the Fairness of Graduation Predictions. EDM.
Aydemir, F. B., & Dalpiaz, F. (2018). A roadmap for ethics-
aware software engineering. In Y. Brun, B. Johnson, &
A. Meliou (Eds.), Proceedings of the International
Workshop on Software Fairness (pp. 15–21). ACM.
https://doi.org/10.1145/3194770.3194778
Baker, R. S., & Hawn, A. (2021). Algorithmic Bias In
Education. International Journal of Artificial
Intelligence in Education, 1-41.
Bandy, J. (2021). Problematic Machine Behavior.
Proceedings of the ACM on Human-Computer
Interaction, 5(CSCW1), 1–34. https://doi.org/
10.1145/3449148
Binkley, D. (2007). Source Code Analysis: A Road Map. In
Future of Software Engineering (FOSE '07). IEEE.
https://doi.org/10.1109/fose.2007.27
Bognár, L., Fauszt, T., & Nagy, G. Z. (2021). Analysis of
Conditions for Reliable Predictions by Moodle
Machine Learning Models. International Journal of
Emerging Technologies in Learning (IJET), 16(06).
https://doi.org/10.3991/ijet.v16i06.18347
Brown, S., Davidovic, J., & Hasan, A. (2021). The
algorithm audit: Scoring the algorithms that score us.
Big Data & Society, 8(1). https://doi.org/10.1177/
2053951720983865
Brundage, M., Avin, S., Wang, J., Belfield, H., Krueger, G.,
Hadfield, G., Khlaaf, H., Yang, J., Toner, H., Fong, R.,
Maharaj, T., Koh, P. W., Hooker, S., Leung, J., Trask,
A., Bluemke, E., Lebensold, J., O'Keefe, C., Koren,
M., . . . Anderljung, M. (2020). Toward Trustworthy AI
Development: Mechanisms for Supporting Verifiable
Claims.
Cohen, J., Krishnamoorthy, G., & Wright, A. M. (2002).
Corporate Governance and the Audit Process
Contemporary Accounting Research, 19(4), 573–594.
https://doi.org/10.1506/983M-EPXG-4Y0R-J9YK
Dawson, S., Joksimovic, S., Poquet, O., & Siemens, G.
(2019). Increasing the Impact of Learning Analytics.
Proceedings of the 9th International Conference on
Learning Analytics & Knowledge, 446–455.
https://doi.org/10.1145/3303772.3303784
Dimopoulos, I., Petropoulou, O., Boloudakis, M., & Retalis,
S. (2013). Using Learning Analytics in Moodle for
assessing students' performance.
Drachsler, H., Hoel, T., Scheffel, M., Kismihók, G., Berg,
A., Ferguson, R., Chen, W., Cooper, A., & Manderveld,
J. (2015). Ethical and privacy issues in the application
of learning analytics. In J. Baron, G. Lynch, N. Maziarz,
P. Blikstein, A. Merceron, & G. Siemens (Eds.),
Proceedings of the Fifth International Conference on
Learning Analytics And Knowledge (pp. 390–391).
ACM. https://doi.org/10.1145/2723576.2723642
Edutechnica (Ed.). (2021, November 2). LMS Data –
Spring 2021 Updates | edutechnica.
https://edutechnica.com/2021/06/21/lms-data-spring-
2021-updates/
EUROPEAN COMMISSION. (2021). Proposal for a
regulation of the European Parliament and the Council
laying down harmonised rules on Artificial Intelligence
(AIA) and amending certain Union legislative acts.
Flavio Calmon, Dennis Wei, Bhanukiran Vinzamuri,
Karthikeyan Natesan Ramamurthy, & Kush R.
Varshney (2017). Optimized Pre-Processing for
Discrimination Prevention. Proceedings of the 31st
International Conference on Neural Information
Processing Systems, 3995–4004.
Galhotra, S., Brun, Y., & Meliou, A. (2017). Fairness
testing: testing software for discrimination. In E.
Bodden, W. Schäfer, A. van Deursen, & A. Zisman
(Eds.), Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering (pp. 498–510).
ACM. https://doi.org/10.1145/3106237.3106277
Grandl, M., Taraghi, B., Ebner, M., & Leitner, P. (2017).
Learning analytics.
Hardt, M., Price, E., & Srebro, N. (2016, October 7).
Equality of Opportunity in Supervised Learning.
Advances in neural information processing systems, 29,
3315-3323.
Hauer, M. P., Adler, R., & Zweig, K. (2021, April).
Assuring Fairness of Algorithmic Decision Making. In
2021 IEEE International Conference on Software
Testing, Verification and Validation Workshops
(ICSTW) (pp. 110-113).
IEEE 1028:2008. (2008). Ieee standard for software
reviews and audits: Software & Systems Engineering
Standards Committee of the IEEE Computer Society.
Institute of Electrical and Electronics Engineers.
http://ieeexplore.ieee.org/servlet/opac?punumber=460
1582
ISO 19011:2018 (2018). ISO 19011:2018: Guidelines for
auditing management systems.
Kim, P. T. (2017). Auditing Algorithms for Discrimination.
U. Pa. L. Rev. Online(166).
Liu, D. Y.T., Atif, A., Froissard, J. C., & Richards, D.
(2019). An enhanced learning analytics plugin for
Moodle: Student engagement and personalised
intervention. In ASCILITE 2015-Australasian Society
for Computers in Learning and Tertiary Education,
Conference Proceedings.
Lu, O. H., Huang, A. Y., Huang, J. C., Lin, A. J., Ogata, H.,
& Yang, S. J. (2018). Applying learning analytics for
the early prediction of Students' academic performance
in blended learning. Journal of Educational Technology
& Society(21(2)), 220–232.
Mai, L., Köchling, A., & Wehner, M. (2021). ‘This Student
Needs to Stay Back’: To What Degree Would
Instructors Rely on the Recommendation of Learning
Analytics? CSEDU (1), 189–197.
https://doi.org/10.5220/0010449401890197
Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., &
Galstyan, A. (2021a). A Survey on Bias and Fairness in
Machine Learning. ACM Computing Surveys, 54(6), 1–
35. https://doi.org/10.1145/3457607
Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., &
Galstyan, A. (2021b). A Survey on Bias and Fairness in
Machine Learning. ACM Computing Surveys, 54(6), 1–
35. https://doi.org/10.1145/3457607