DIY Robocars (2017). Open datasets. https://
diyrobocars.com/open-datasets/. Accessed 2021-08-
20.
Doll
´
ar, P., Wojek, C., Schiele, B., and Perona, P. (2009).
Pedestrian detection: A benchmark. In IEEE Confer-
ence on Computer Vision and Pattern Recognition.
Dong, Y., Zhong, Y., Yu, W., Zhu, M., Lu, P., Fang,
Y., Hong, J., and Peng, H. (2019). Mcity data
collection for automated vehicles study. arXiv
preprint:1912.06258.
ETH VIS Group (2018). Bdd100k. https:
//www.bdd100k.com/. Accessed 2021-08-07.
ETH Z
¨
urich (2019). The fishyscapes benchmark. https:
//fishyscapes.com/. Accessed 2021-08-21.
Ettinger, S., Cheng, S., Caine, B., Liu, C., Zhao, H., Prad-
han, S., Chai, Y., Sapp, B., Qi, C. R., Zhou, Y.,
Yang, Z., Chouard, A., Sun, P., Ngiam, J., Vasude-
van, V., McCauley, A., Shlens, J., and Anguelov, D.
(2021). Large scale interactive motion forecasting
for autonomous driving: The waymo open motion
dataset. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV).
Facebook (2013). React. https://reactjs.org/. Accessed
2021-08-22.
Facebook AI (2018). Datasets. https://paperswithcode.com/
datasets. Accessed 2021-08-16.
Feng, D., Haase-Sch
¨
utz, C., Rosenbaum, L., Hertlein,
H., Glaeser, C., Timm, F., Wiesbeck, W., and Diet-
mayer, K. (2020). Deep multi-modal object detection
and semantic segmentation for autonomous driving:
Datasets, methods, and challenges. IEEE Transac-
tions on Intelligent Transportation Systems, 22(3).
Feng, D., Haase-Sch
¨
utz, C., Rosenbaum, L., Hertlein,
H., Glaeser, C., Timm, F., Wiesbeck, W., and
Dietmayer, K. (2021). Deep Multi-modal Ob-
ject Detection and Semantic Segmentation for
Autonomous Driving: Datasets, Methods, and
Challenges. https://boschresearch.github.io/
multimodalperception/dataset.html. Accessed
2021-08-22.
for Image Processing, H. C. (2017). Bosch Small Traf-
fic Lights Dataset. https://hci.iwr.uni-heidelberg.de/
content/bosch-small-traffic-lights-dataset. Accessed
2021-08-12.
Ford (2020). Ford Autonomous Vehicle Dataset. https://
avdata.ford.com/. Accessed 2021-08-20.
FOT-Net (2020). Automated driving datasets.
https://wiki.fot-net.eu/index.php/Automated
Driving Datasets. Accessed 2021-08-20.
Geiger, A., Lenz, P., Stiller, C., and Urtasun, R. (2013). Vi-
sion meets robotics: The KITTI dataset. International
Journal of Robotics Research (IJRR).
Geyer, J., Kassahun, Y., Mahmudi, M., Ricou, X., Durgesh,
R., Chung, A. S., Hauswald, L., Pham, V. H.,
M
¨
uhlegg, M., Dorn, S., Fernandez, T., J
¨
anicke, M.,
Mirashi, S., Savani, C., Sturm, M., Vorobiov, O.,
Oelker, M., Garreis, S., and Schuberth, P. (2020).
A2d2: Audi autonomous driving dataset. arXiv
preprint:2004.06320.
G
¨
ahlert, N., Jourdan, N., Cordts, M., Franke, U., and
Denzler, J. (2020). Cityscapes 3d: Dataset and
benchmark for 9 DoF vehicle detection. arXiv
preprint:2006.07864.
Google (2018). Datasetsearch - autonomous driv-
ing. https://datasetsearch.research.google.com/
search?query=Autonomous%20driving&docid=
L2cvMTFwd2Y0amZ0Yw%3D%3D. Accessed
2021-08-12.
Heidecker, F., Breitenstein, J., R
¨
osch, K., L
¨
ohdefink, J.,
Bieshaar, M., Stiller, C., Fingscheidt, T., and Sick,
B. (2021). An application-driven conceptualization of
corner cases for perception in highly automated driv-
ing. arXiv preprin:2103.03678.
Hesai, Scale AI (2020). PandaSet by Hesai and Scale AI.
https://pandaset.org/. Accessed 2021-08-05.
Heyuan, L. (2019). lhyfst/awesome-autonomous-driving-
datasets. https://github.com/lhyfst/awesome-
autonomous-driving-datasets. Accessed 2021-08-10.
Houston, J., Zuidhof, G., Bergamini, L., Ye, Y., Jain, A.,
Omari, S., Iglovikov, V., and Ondruska, P. (2020). One
thousand and one hours: Self-driving motion predic-
tion dataset. arXiv preprint:2006.14480.
Hu, Y., Binas, J., Neil, D., Liu, S.-C., and Delbr
¨
uck,
T. (2020). DDD20 end-to-end event camera driv-
ing dataset: Fusing frames and events with deep
learning for improved steering prediction. arXiv
preprint:2005.08605.
INSAAN (2018). India driving dataset. https://
idd.insaan.iiit.ac.in/. Accessed 2021-08-12.
Inst. of Neuroinformatics, Univ. of Zurich and ETH
Zurich (2020). DDD20: end-to-end DAVIS driving
dataset. https://sites.google.com/view/davis-driving-
dataset-2020/home.
INTERACTION Dataset Consortium (2019). INTERAC-
TION Dataset. https://interaction-dataset.com/. Ac-
cessed 2021-08-18.
Jeong, J., Cho, Y., Shin, Y.-S., Roh, H., and Kim, A. (2019).
Complex urban dataset with multi-level sensors from
highly diverse urban environments. The International
Journal of Robotics Research, 38(6).
Kaggle (2021). Datasets - autonomous driv-
ing. https://www.kaggle.com/datasets?search=
Autonomous+Driving&sort=updated. Accessed
2021-08-15.
KAIST (2017). Visual Perception for Autonomous Driv-
ing. https://sites.google.com/view/multispectral. Ac-
cessed 2021-08-22.
Kim, S.-h. and Hwang, Y. (2021). A survey on deep learn-
ing based methods and datasets for monocular 3d ob-
ject detection. Electronics, 10(4).
Krunal (2018). Semantic segmentation datasets for urban
driving scenes. https://autonomous-driving.org/2018/
07/15/semantic-segmentation-datasets-for-urban-
driving-scenes/. Accessed 2021-08-22.
L3Pilot (2019). Opendd. https://l3pilot.eu/data/opendd.
Accessed 2021-08-09.
Laflamme, C.-
´
E. N., Pomerleau, F., and Giguere, P.
(2019). Driving datasets literature review. arXiv
preprint:1910.11968.
VEHITS 2022 - 8th International Conference on Vehicle Technology and Intelligent Transport Systems
54