need to enlarge W beyond 6 and that the results of
the CNN neural model are just as good as the results
of the CNN-LSTM that contains a recurrent layer and
is therefore slower. From a practical perspective, it
means that short system calls sequences are enough
to determine whether or not the process is malicious,
and that this detection can be done using a fast pre-
trained CNN model.
REFERENCES
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,
Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin,
M., Ghemawat, S., Goodfellow, I., Harp, A., Irving,
G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kud-
lur, M., Levenberg, J., Man
´
e, D., Monga, R., Moore,
S., Murray, D., Olah, C., Schuster, M., Shlens, J.,
Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Van-
houcke, V., Vasudevan, V., Vi
´
egas, F., Vinyals, O.,
Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and
Zheng, X. (2015). TensorFlow: Large-scale machine
learning on heterogeneous systems. Software avail-
able from tensorflow.org.
Agrawal, R., Stokes, J. W., Selvaraj, K., and Marinescu, M.
(2019). Attention in recurrent neural networks for ran-
somware detection. In ICASSP 2019-2019 IEEE In-
ternational Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pages 3222–3226. IEEE.
Al-Hawawreh, M. and Sitnikova, E. (2019). Leveraging
deep learning models for ransomware detection in the
industrial internet of things environment. In 2019 Mil-
itary Communications and Information Systems Con-
ference (MilCIS), pages 1–6. IEEE.
Alam, M., Sinha, S., Bhattacharya, S., Dutta, S.,
Mukhopadhyay, D., and Chattopadhyay, A. (2020).
Rapper: Ransomware prevention via performance
counters. arXiv preprint arXiv:2004.01712.
Alhawi, O. M., Baldwin, J., and Dehghantanha, A. (2018).
Leveraging machine learning techniques for windows
ransomware network traffic detection. In Cyber threat
intelligence, pages 93–106. Springer.
Amit, G., Yeshooroon, A., Kiperberg, M., and Zaidenberg,
N. J. (2021). Dlp-visor: A hypervisor-based data leak-
age prevention system. In ICISSP, pages 416–423.
Arabo, A., Dijoux, R., Poulain, T., and Chevalier, G. (2020).
Detecting ransomware using process behavior analy-
sis. Procedia Computer Science, 168:289–296.
Bahador, M. B., Abadi, M., and Tajoddin, A. (2014). Hpc-
malhunter: Behavioral malware detection using hard-
ware performance counters and singular value de-
composition. In 2014 4th International Conference
on Computer and Knowledge Engineering (ICCKE),
pages 703–708. IEEE.
Breiman, L. (2001). Random forests. Machine learning,
45(1):5–32.
Chang, Z., Zhang, Y., and Chen, W. (2018). Effective adam-
optimized lstm neural network for electricity price
forecasting. In 2018 IEEE 9th international confer-
ence on software engineering and service science (IC-
SESS), pages 245–248. IEEE.
Chen, Q., Islam, S. R., Haswell, H., and Bridges, R. A.
(2019). Automated ransomware behavior analysis:
Pattern extraction and early detection. In International
Conference on Science of Cyber Security, pages 199–
214. Springer.
Chollet, F. et al. (2015). Keras. https://github.com/fchollet/
keras.
Cortes, C. and Vapnik, V. (1995). Support-vector networks.
Machine learning, 20(3):273–297.
Corvus Forensics. Virusshare.com. https://virusshare.com/.
Accessed: 2021-05-11.
Cusack, G., Michel, O., and Keller, E. (2018). Machine
learning-based detection of ransomware using sdn. In
Proceedings of the 2018 ACM International Workshop
on Security in Software Defined Networks & Network
Function Virtualization, pages 1–6.
Dash, S. K., Suarez-Tangil, G., Khan, S., Tam, K., Ahmadi,
M., Kinder, J., and Cavallaro, L. (2016). Droidscribe:
Classifying android malware based on runtime behav-
ior. In 2016 IEEE Security and Privacy Workshops
(SPW), pages 252–261. IEEE.
Demme, J., Maycock, M., Schmitz, J., Tang, A., Waksman,
A., Sethumadhavan, S., and Stolfo, S. (2013). On
the feasibility of online malware detection with per-
formance counters. ACM SIGARCH Computer Archi-
tecture News, 41(3):559–570.
Egunjobi, S., Parkinson, S., and Crampton, A. (2019).
Classifying ransomware using machine learning al-
gorithms. In International Conference on Intelligent
Data Engineering and Automated Learning, pages
45–52. Springer.
Fereidooni, H., Conti, M., Yao, D., and Sperduti, A. (2016).
Anastasia: Android malware detection using static
analysis of applications. In 2016 8th IFIP interna-
tional conference on new technologies, mobility and
security (NTMS), pages 1–5. IEEE.
Gilbert, H. and Handschuh, H. (2003). Security analysis
of sha-256 and sisters. In International workshop
on selected areas in cryptography, pages 175–193.
Springer.
Grave, E., Bojanowski, P., Gupta, P., Joulin, A., and
Mikolov, T. (2018). Fasttext word vectors. https:
//fasttext.cc/docs/en/crawl-vectors.html.
Han, W., Xue, J., Wang, Y., Huang, L., Kong, Z., and Mao,
L. (2019). Maldae: Detecting and explaining malware
based on correlation and fusion of static and dynamic
characteristics. Computers & Security, 83:208–233.
Ho, T. K. (1995). Random decision forests. In Proceedings
of 3rd international conference on document analysis
and recognition, volume 1, pages 278–282. IEEE.
Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural computation, 9(8):1735–1780.
Homayoun, S., Dehghantanha, A., Ahmadzadeh, M.,
Hashemi, S., Khayami, R., Choo, K.-K. R., and New-
ton, D. E. (2019). Drthis: Deep ransomware threat
hunting and intelligence system at the fog layer. Fu-
ture Generation Computer Systems, 90:94–104.
ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy
662