era of big data. Specific contributions foreseen are
C1) a collection of design patterns regarding
modelling, management and data curation practices
and principles for dimensionalization and integration
in data warehousing; C2) a prototype of an extensible
KB for DW design patters; and C3) a conceptual
model for semantification of heterogeneous data in
support of automated dimensionalization and
integration in data warehousing.
7 STAGE OF THE RESEARCH
This study is currently in phase 2.a (define objectives
of a solution) of the research plan depicted in Figure
1. It involves a literature study and investigation into
existing knowledge and solutions regarding the
research problem and questions.
REFERENCES
Abelló, A., Romero, O., Pedersen, T. B., Berlanga, R.,
Nebot, V., Aramburu, M. J., & Simitsis, A. (2015).
Using Semantic Web technologies for exploratory
OLAP: A survey. IEEE transactions on knowledge and
data engineering, 27(2), 571-588.
Bansal, S. K., & Kagemann, S. (2015). Integrating big data:
a semantic extract-transform-load framework.
Computer, 48(3), 42-50.
Berndt, D. J., Hevner, A. R., & Studnicki, J. (2003). The
Catch data warehouse: Support for community health
care decision-making. Decision Support Systems,
35(3), 367-384.
Berners-Lee, T. (1998). What the Semantic Web can
represent. Retrieved September 9, 2021, from
https://www.w3.org/DesignIssues/RDFnot.html
Bizer, C., Boncz, P., Brodie, M. L., & Erling, O. (2011).
The meaningful use of big data: Four perspectives - four
challenges. ACM SIGMod Record, 40(4), 56-60.
Corbin, J. M., & Strauss, A. L. (2014). Basics of qualitative
research: Techniques and procedures for developing
grounded theory. Sage.
Den Hamer, P., Hare, J., Jones, L. C., Choudhary, F.,
Sallam, R., & Vashisth, S. (2021). Top trends in data
and analytics for 2021: From big to small and wide
data. Retrieved October 15, 2021, from
https://www.gartner.com/doc/reprints?id=1-
27GN5DZK&ct=210917
Eichler, R., Giebler, C., Gröger, C., Schwarz, H., &
Mitschang, B. (2021). Modeling metadata in data lakes
– a generic model. Data & knowledge engineering, 136,
101931.
Freitas, A. (2015). Schema-agnostic queries for large-
schema databases: A distributional semantics
approach [Thesis – PhD, National University of
Ireland]. Galway.
Freitas, A., & Curry, E. (2016). Big data curation. In J. M.
Cavanillas, E. Curry, & W. Wahlster (Eds.), New
horizons for a data-driven economy: A roadmap for
usage and exploitation of big data in Europe (pp. 87-
118). Springer.
Gacitua, R., Mazon, J. N., & Cravero, A. (2019). Using
Semantic Web technologies in the development of data
warehouses: A systematic mapping. Wiley
Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, 9(3), e1293.
Gorton, I., Klein, J., & Nurgaliev, A. (2015). Architecture
knowledge for evaluating scalable databases. In L.
Bass, P. Lago, & P. Kruchten (Eds.), Proceedings (pp.
95-104). 12th Working IEEE/IFIP Conference on
Software Architecture (WICSA 2015), Montreal,
Canada. IEEE.
Gupta, A. (2021, May 11). Data fabric architecture is key
to modernizing data management and integration.
Gartner. Retrieved October 13, 2021, from
https://www.gartner.com/smarterwithgartner/data-
fabric-architecture-is-key-to-modernizing-data-
management-and-integration
Helland, P. (2011). If you have too much data, then 'good
enough' is good enough. Communications of the ACM,
54(6), 40-47.
Hentrich, C., Zdun, U., Hlupic, V., & Dotsika, F. (2015).
An approach for pattern mining through grounded
theory techniques and its applications to process-driven
SOA patterns. In U. Van Heesch & C. Kohls (Eds.),
EuroPLoP 2013: Proceedings of the 18th European
Conference on Pattern Languages of Program (pp. 1-
16). Irsee, Germany. ACM.
IBM. (2021). Data fabric architecture delivers instant
benefits. Retrieved November 22, 2021, from
https://www.ibm.com/downloads/cas/V4QYOAPR
Inmon, W. H., Strauss, D., & Neushloss, G. (2010). DW
2.0: The architecture for the next generation of data
warehousing. Morgan Kaufmann.
Jägare, U. (2020). The modern cloud data platform for
dummies: Databricks special edition. Wiley.
Kimball, R. (2016). The future is bright. In R. Kimball &
M. Ross (Eds.), The Kimball Group reader:
Relentlessly practical tools for data warehousing and
business intelligence (2nd ed. pp. 847-851). Wiley.
(Design Tip #180, December 1, 2015)
Kimball, R., & Ross, M. (2013a). Big data analytics. In The
data warehouse toolkit: the definitive guide to
dimensional modeling (3rd ed. pp. 527-542). Wiley.
Kimball, R., & Ross, M. (2013b). The data warehouse
toolkit: The definitive guide to dimensional modeling
(3rd ed.). Wiley.
Kimball, R., & Ross, M. (2016). The Kimball Group
reader: Relentlessly practical tools for data
warehousing and business intelligence (2nd ed.).
Wiley.
Kimball, R., Ross, M., Thornthwaite, W., Mundy, J., &
Becker, B. (2008). The data warehouse lifecycle toolkit
(2nd ed.). Wiley.
Krishnan, K. (2013). Data warehousing in the age of big
data. Morgan Kaufmann.