event logs on the basis of security risks. Journal of
Intelligent Information Systems, 50(1):195–230.
Fazzinga, B., Flesca, S., Furfaro, F., and Pontieri, L.
(2018c). Process discovery from low-level event logs.
In International Conference on Advanced Information
Systems Engineering, pages 257–273. Springer.
Flod
´
en, J. and Woxenius, J. (2021). A stakeholder analysis
of actors and networks for land transport of dangerous
goods. Research in Transportation Business & Man-
agement, page 100629.
Gibson, K. (2000). The moral basis of stakeholder theory.
Journal of business ethics, pages 245–257.
Graafmans, T., Turetken, O., Poppelaars, H., and Fahland,
D. (2021). Process mining for six sigma. Business &
Information Systems Engineering, 63(3):277–300.
Greenley, G. E. and Foxall, G. R. (1997). Multiple stake-
holder orientation in uk companies and the implica-
tions for company performance. Journal of Manage-
ment Studies, 34(2):259–284.
Gruhn, V. and Laue, R. (2007). Approaches for busi-
ness process model complexity metrics. In Technolo-
gies for business information systems, pages 13–24.
Springer.
G
¨
unther, C. W. and Van Der Aalst, W. M. P. (2007).
Fuzzy mining–adaptive process simplification based
on multi-perspective metrics. In International con-
ference on business process management, pages 328–
343. Springer.
Iacob, M.-E., Charismadiptya, G., van Sinderen, M., and
Piest, J. P. S. (2019). An architecture for situation-
aware smart logistics. In 2019 IEEE 23rd Inter-
national Enterprise Distributed Object Computing
Workshop (EDOCW), pages 108–117. IEEE.
Iacob, M. E., Monteban, J., Van Sinderen, M., Hegeman,
E., and Bitaraf, K. (2018). Measuring enterprise archi-
tecture complexity. In 2018 IEEE 22nd International
Enterprise Distributed Object Computing Workshop
(EDOCW), pages 115–124. IEEE.
Kumar, M. V. M., Thomas, L., and Annappa, B. (2017).
Distilling lasagna from spaghetti processes. In Pro-
ceedings of the 2017 International Conference on In-
telligent Systems, Metaheuristics & Swarm Intelli-
gence, pages 157–161.
Leemans, S. J. J., Goel, K., and van Zelst, S. J. (2020).
Using multi-level information in hierarchical process
mining: Balancing behavioural quality and model
complexity. In 2020 2nd International Conference on
Process Mining (ICPM), pages 137–144. IEEE.
Mans, R. S., Van der Aalst, W. M. P., Vanwersch, R. J. B.,
and Moleman, A. J. (2012). Process mining in health-
care: Data challenges when answering frequently
posed questions. In Process Support and Knowl-
edge Representation in Health Care, pages 140–153.
Springer.
Muketha, G. M., Abd Ghani, A. A., Selamat, M. H., and
Atan, R. (2010). A survey of business processes
complexity metrics. Information Technology Journal,
9(7):1336–1344.
Peffers, K., Tuunanen, T., Rothenberger, M. A., and Chat-
terjee, S. (2007). A design science research method-
ology for information systems research. Journal of
management information systems, 24(3):45–77.
Piest, J. P. S., Cutinha, J. A., Bemthuis, R. H., and Bukhsh,
F. A. (2021). Evaluating the use of the open trip model
for process mining: An informal conceptual mapping
study in logistics. In Proceedings of the 23rd Interna-
tional Conference on Enterprise Information Systems,
pages 290–296. SCITEPRESS.
Post, J. E., Preston, L. E., and Sachs, S. (2002). Managing
the extended enterprise: The new stakeholder view.
California management review, 45(1):6–28.
Schuster, D., van Zelst, S. J., and van der Aalst, W. M. P.
(2022). Utilizing domain knowledge in data-driven
process discovery: A literature review. Computers in
Industry, 137:103612.
Tolentino-Zondervan, F., Bogers, E., and van de Sande, L.
(2021). A Managerial and Behavioral Approach in
Aligning Stakeholder Goals in Sustainable Last Mile
Logistics: A Case Study in the Netherlands. Sustain-
ability, 13(8).
Van Cruchten, R. M. E. R. and Weigand, H. H. (2018a).
Process mining in logistics: The need for rule-based
data abstraction. In 2018 12th International Confer-
ence on Research Challenges in Information Science
(RCIS), pages 1–9. IEEE.
Van Cruchten, R. R. and Weigand, H. H. (2018b). Process
mining in logistics: The need for rule-based data ab-
straction. In 2018 12th International Conference on
Research Challenges in Information Science (RCIS),
pages 1–9. IEEE.
Van der Aalst, W. M. P. (2016). Process mining - Data
science in action. Springer.
Van der Aalst, W. M. P., De Medeiros, A. K. A., and Wei-
jters, A. J. M. M. (2006). Process equivalence: Com-
paring two process models based on observed behav-
ior. In International conference on business process
management, pages 129–144. Springer.
Van der Aalst, W. M. P. and Gunther, C. W. (2007). Finding
structure in unstructured processes: The case for pro-
cess mining. In Seventh International Conference on
Application of Concurrency to System Design (ACSD
2007), pages 3–12. IEEE.
Van Eck, M. L., Lu, X., Leemans, S. J. J., and Van der Aalst,
W. M. P. (2015). PM
2
: A process mining project
methodology. In International Conference on Ad-
vanced Information Systems Engineering, pages 297–
313. Springer.
Van Zelst, S. J., Mannhardt, F., de Leoni, M., and
Koschmider, A. (2021). Event abstraction in process
mining: literature review and taxonomy. Granular
Computing, 6(3):719–736.
Wirth, R. and Hipp, J. (2000). CRISP-DM: Towards a stan-
dard process model for data mining. In Proceedings of
the 4th international conference on the practical ap-
plications of knowledge discovery and data mining.
Wynn, M. T., Poppe, E., Xu, J., ter Hofstede, A. H., Brown,
R., Pini, A., and Van der Aalst, W. M. P. (2017).
Processprofiler3d: A visualisation framework for log-
based process performance comparison. Decision
Support Systems, 100:93–108.
ICEIS 2022 - 24th International Conference on Enterprise Information Systems
146