Available at: https://sites.google.com/site/healthcare
industryinsights/healthcare-medical-analytics-market.
Hermon, R. and Williams, P. (2014) ‘Big data in healthcare:
What is it used for?’, Proceedings of the 3rd Australian
eHealth Informatics and Security Conference, pp. 40–
49. doi: 10.4225/75/57982b9431b48.
Heyman, D. L., and Rodier, G. (2004) 'Global Surveillance,
National Surveillance, and SARS. Emerging Infectious
Diseases.', PubMed, 10(2), pp. 173–175.
doi.org/10.3201/eid1002.031038
IBM (2019) ‘Cost of a data breach report’, IBM Security,
p. 76. Available at: https://www.ibm.com/
downloads/cas/ZBZLY7KL.
Ioannidis J. P. (2013). 'Informed consent, big data, and the
oxymoron of research that is not research', The
American journal of bioethics: AJOB, 13(4), 40–42.
Journal, H. (2019) ‘Healthcare Data Breach Statistics’,
Www.Hipaajournal.Com, pp. 1–13. Available at:
https://www.hipaajournal.com/healthcare-data-breach-
statistics/.
Kuempel, A. (2016) ‘The invisible middlemen: A critique
and call for reform of the data broker industry’,
Northwestern Journal of International Law and
Business, 36(1), pp. 207–234.
Luo, J. Wu, M., Gopukumar, D., & Zhao, Y. (2016) ‘Big
Data Application in Biomedical Research and Health
Care: A Literature Review’, Biomedical Informatics
Insights, 8, p. BII.S31559. doi: 10.4137/bii.s31559.
Mariani, D.M.R., Mohammed, S. and Mohammed, S.,
(2015) ‘Cybersecurity challenges and compliance
issues within the us healthcare sector’, International
Journal of Business and Social Research, 5(02).
Mittelstadt, B. (2019) ‘AI Ethics – Too principled to fail?’,
arXiv, pp. 1–15. doi: 10.2139/ssrn.3391293.
Nair, S. R. (2020). ‘A review on ethical concerns in big data
management’, International Journal of Big Data
Management, 1(1), 8-25.
NCI (National Cancer Institute) (2020) ‘HINTS 5 cycle 4
public codebook’, Hints. Available at:
https://hints.cancer.gov/data/download-data.aspx.
NIH (2021) ‘Health Information National Trends Survey
(HINTS)’, National Cancer Institute, p. Survey.
Available at: https://hints.cancer.gov/%0Ahttp://
hints.cancer.gov/docs/HINTS 2007 Annotated Mail
Instrument.pdf.
Obermeyer, Z., Powers B., Vogeli C., Mullainathan S.
(2019) ‘Dissecting racial bias in an algorithm used to
manage the health of populations’, Science, 366(6464),
pp. 447–453. doi: 10.1126/science.aax2342.
Patil, H. K. and Seshadri, R. (2014) ‘Big data security and
privacy issues in healthcare’, Proceedings - 2014 IEEE
International Congress on Big Data, Big Data Congress
2014, pp. 762–765. doi: 10.1109/BigData.Congress.
2014.112.
Paulus, J. K., Wessler, B. S., Lundquist, C. M., & Kent, D.
M. (2018) ‘Effects of Race Are Rarely Included in
Clinical Prediction Models for Cardiovascular
Disease’, Journal of General Internal Medicine, 33(9),
pp. 1429–1430. doi: 10.1007/s11606-018-4475-x.
Piai, S. and Claps, M. (2013) ‘Bigger data for better
healthcare’, IDC Health Insights, pp.1-24.
Raghupathi, V. and Raghupathi, W. (2020) ‘Healthcare
Expenditure and Economic Performance: Insights From
the United States Data’, Frontiers in Public Health,
8(May), pp. 1–15. doi: 10.3389/fpubh.2020.00156.
Raja, R., Ali, S., Mukherjee, I., Sarkar, B.K. (2020) ‘A
Systematic Review of Healthcare Big Data’, Scientific
Programming, 2020. doi: 10.1155/2020/5471849.
Razzak, MI, Imran, M. & Xu, G. (2020) 'Big data analytics
for preventive medicine', Neural Comput & Applic 32,
4417–4451. doi.org/10.1007/s00521-019-04095-y
Rehman, A., Naz, S. and Razzak, I. (2021) ‘Leveraging big
data analytics in healthcare enhancement: trends,
challenges and opportunities’, Multimedia Systems.
doi: 10.1007/s00530-020-00736-8.
Reinsch, R. W. and Goltz, S. (2016) ‘Big Data: Can the
Attempt To Be More Discriminating Be More
Discriminatory Instead?’, St. Louis University Law
Journal, 61(1), pp. 35–82.
Selby-Bigge, L. A. (ed.) (1975). ‘Enquiries Concerning
Human Understanding and Concerning the Principles
of Morals’. Oxford University Press.
Sonawane, V. P. and Irabashetti, P. (2015) ‘Method for
preventing direct and indirect discrimination in data
mining’, Proceedings - 1st International Conference on
Computing, Communication, Control and Automation,
ICCUBEA 2015, 25(7), pp. 353–357.
Suresh, H. and Guttag, J. V. (2019) ‘A framework for
understanding unintended consequences of machine
learning’, arXiv preprint arXiv:1901.10002, 2.
Ward, J. S. and Barker, A. (2013) ‘Undefined By Data: A
Survey of Big Data Definitions’. Available at:
http://arxiv.org/abs/1309.5821.
Winter, J. S. (2018) ‘Introduction to the Special Issue:
Digital Inequalities and Discrimination in the Big Data
Era’, Journal of Information Policy, 8, 1–4.
https://doi.org/10.5325/jinfopoli.8.2018.0001.
Wong, Z. S. Y., Zhou, J. and Zhang, Q. (2019) ‘Artificial
Intelligence for infectious disease Big Data Analytics’,
Infection, Disease and Health, 24(1), pp. 44–48. doi:
10.1016/j.idh.2018.10.002.
Zhu, H, Wu, C.K., Koo, C.H., Tsang, Y.T., Liu, Y., Chi,
H.R. and Tsang, K-F. (2019), 'Smart Healthcare in the
Era of Internet-of-Things', IEEE Consumer Electronics
Magazine, vol. 8, no. 5, 8822574, pp. 26-30.
https://doi.org/10.1109/MCE.2019.2923929
Žliobaitė, I. (2017) ‘Measuring discrimination in
algorithmic decision making’, Data Mining and
Knowledge Discovery, 31(4), pp. 1060–1089.