89(November 2020). https://doi.org/10.1016/j.compe
leceng.2020.106908
Cheriyan, J., Savarimuthu, B. T. R., & Cranefield, S.
(2021). Norm Violation in Online Communities – A
Study of Stack Overflow Comments. Lecture Notes in
Computer Science (Including Subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in
Bioinformatics), 12298 LNAI, 20–34.
https://doi.org/10.1007/978-3-030-72376-7_2
Cheruvelil, J., and Da-Silva, B. C. (2019). Developers’
sentiment and issue reopening. Proceedings - 2019
IEEE/ACM 4th International Workshop on Emotion
Awareness in Software Engineering, SEmotion 2019,
29–33. https://doi.org/10.1109/SEmotion.2019.00013
Ding, J., Sun, H., Wang, X., & Liu, X. (2018). Entity-level
sentiment analysis of issue comments. Proceedings -
International Conference on Software Engineering, 7–
13. https://doi.org/10.1145/3194932.3194935
Erdemir, U., Tekin, U., & Buzluca, F. (2011). E-quality: A
graph based object oriented software quality
visualization tool. Proceedings of VISSOFT 2011 - 6th
IEEE International Workshop on Visualizing Software
for Understanding and Analysis. https://doi.org/
10.1109/VISSOF.2011.6069454
Gachechiladze, D., Lanubile, F., Novielli, N., &
Serebrenik, A. (2017). Anger and its direction in
collaborative software development. Proceedings -
2017 IEEE/ACM 39th International Conference on
Software Engineering: New Ideas and Emerging
Results Track, ICSE-NIER 2017, 11–14.
https://doi.org/10.1109/ICSE-NIER.2017.18
Geet, A., Illina, I., Fohr, D., Landscapes, T. N., Toxic, A.,
Sa, A. G. D., … Lorraine, U. De. (2020). Towards Non-
Toxic Landscapes : Automatic Toxic Comment
Detection Using DNN. In Second Workshop on
Trolling, Aggression and Cyber- bullying (LREC,
2020).
Georgakopoulos, S. V., Vrahatis, A. G., Tasoulis, S. K., &
Plagianakos, V. P. (2018). Convolutional neural
networks for toxic comment classification. ACM
International Conference Proceeding Series.
https://doi.org/10.1145/3200947.3208069
Graziotin, D., Fagerholm, F., Wang, X., & Abrahamsson,
P. (2018). What happens when software developers are
(un)happy. Journal of Systems and Software, 140, 32–
47. https://doi.org/10.1016/j.jss.2018.02.041
Gunsel, A. (2014). The Effects of Emotional Labor on
Software Quality: the Moderating Role of Project
Complexity. Journal of Global Strategic Management,
2(8), 96–96. https://doi.org/10.20460/jgsm.20148 15645
Guzman, E., Azócar, D., & Li, Y. (2014). Sentiment
analysis of commit comments in GitHub: An empirical
study. 11th Working Conference on Mining Software
Repositories, MSR 2014 - Proceedings, 352–355.
https://doi.org/10.1145/2597073.2597118
Guzman, E., & Bruegge, B. (2013). Towards emotional
awareness in software development teams. 2013 9th
Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, ESEC/FSE 2013
- Proceedings, 671–674. https://doi.org/10.114
5/2491411.2494578
Hancock, P. A., & Szalma, J. L. (2008). Performance under
stress.
Performance Under Stress, (January 2008), 1–
389. https://doi.org/10.21139/wej.2017.013
Horch, J. W. (1996). Metrics and models in software quality
engineering. Control Engineering Practice.
https://doi.org/10.1016/0967-0661(96)81493-6
Howard, M. J., Gupta, S., Pollock, L., & Vijay-Shanker, K.
(2013). Automatically mining software-based,
semantically-similar words from comment-code
mappings. IEEE International Working Conference on
Mining Software Repositories, 377–386. https://doi.
org/10.1109/MSR.2013.6624052
Hutter, F., Kotthoff, L., & Vanschoren, J. (2019).
Automated Machine Learning. The Springer Series on
Challenges in Machine Learning. Automated Machine
Learning. The Springer Series on Challenges in
Machine Learning. Springer. https://doi.org/10
.1007/978-3-319-00960-5_6
ISO. (2011). ISO - ISO/IEC 25010:2011 - Systems and
software engineering — Systems and software Quality
Requirements and Evaluation (SQuaRE) — System and
software quality models. Retrieved November 24,
2021, from https://www.iso.org/standard/35733.html
Jongeling, R., Sarkar, P., Datta, S., & Serebrenik, A.
(2017). On negative results when using sentiment
analysis tools for software engineering research.
Empirical Software Engineering, 22(5), 2543–2584.
https://doi.org/10.1007/s10664-016-9493-x
Kaur, A., Singh, A. P., Dhillon, G. S., & Bisht, D. (2018).
Emotion Mining and Sentiment Analysis in Software
Engineering Domain. Proceedings of the 2nd
International Conference on Electronics,
Communication and Aerospace Technology, ICECA
2018, (Iceca), 1170–1173. https://doi.org/10.1109/
ICECA.2018.8474619
Kritikos, A., Venetis, T., & Stamelos, I. (2020). An
Empirical Investigation of Sentiment Analysis of the
Bug Tracking Process in Libre Office Open Source
Software. IFIP Advances in Information and
Communication Technology (Vol. 582 IFIP). Springer
International Publishing. https://doi.org/10.1007/978-
3-030-47240-5_4
Lenarduzzi, V., Lomio, F., Huttunen, H., & Taibi, D.
(2020). Are SonarQube Rules Inducing Bugs? SANER
2020 - Proceedings of the 2020 IEEE 27th
International Conference on Software Analysis,
Evolution, and Reengineering, 501–511. https://doi.org
/10.1109/SANER48275.2020.9054821
Lenarduzzi, V., Saarimäki, N., & Taibi, D. (2019). The
technical debt dataset. ACM International Conference
Proceeding Series, (May), 2–11. https://doi.org
/10.1145/3345629.3345630
Lewis, W. E., Dobbs, D., & Veerapillai, G. (2017).
Software Testing and Continuous Quality Improvement
(3rd ed.). Auerbach Publications. https://doi.org/
https://doi.org/10.1201/9781439834367
Li, L., Goethals, F., Baesens, B., & Snoeck, M. (2017).
Predicting software revision outcomes on GitHub using