6 CONCLUSIONS
In this work we proposed an extension of the default
Kubernetes scheduler realized in the form of a custom
scoring plugin. The proposed plugin takes into ac-
count application communication requirements, traf-
fic history and network latency metrics to assign
node scores when scheduling each application Pod.
Application communication requirements are speci-
fied through a TOSCA service template that repre-
sents application components as node templates and
microservice-to-microservice communication chan-
nels as relationship templates. Application traffic his-
tory and current node-to-node latency measures are
instead queried from a Prometheus server. As a fu-
ture work we plan to add the possibility to model more
quantitative communication requirements, like dead-
lines on communication channels, inside TOSCA ser-
vice templates and to design custom Kubernetes con-
trollers that monitor application components and re-
deploy them if those requirements are not met.
REFERENCES
Ahmad, I., AlFailakawi, M. G., AlMutawa, A., and Al-
salman, L. (2021). Container scheduling techniques:
A survey and assessment. Journal of King Saud Uni-
versity - Computer and Information Sciences.
Aral, A., Brandic, I., Uriarte, R. B., De Nicola, R., and
Scoca, V. (2019). Addressing application latency re-
quirements through edge scheduling. Journal of Grid
Computing, 17(4):677–698.
Bulej, L., Bure
ˇ
s, T., Filandr, A., Hn
ˇ
etynka, P., Hn
ˇ
etynkov
´
a,
I., Pacovsk
´
y, J., Sandor, G., and Gerostathopoulos, I.
(2021). Managing latency in edge–cloud environment.
Journal of Systems and Software, 172:110872.
Burns, B., Grant, B., Oppenheimer, D., Brewer, E., and
Wilkes, J. (2016). Borg, omega, and kubernetes. ACM
Queue, 14:70–93.
Calcaterra, D., Di Modica, G., Mazzaglia, P., and Tomar-
chio, O. (2021). TORCH: a TOSCA-Based Orchestra-
tor of Multi-Cloud Containerised Applications. Jour-
nal of Grid Computing, 19(5).
Calcaterra, D., Di Modica, G., and Tomarchio, O. (2020).
Cloud resource orchestration in the multi-cloud land-
scape: a systematic review of existing frameworks.
Journal of Cloud Computing, 9(49).
Caminero, A. C. and Mu
˜
noz-Mansilla, R. (2021). Quality of
service provision in fog computing: Network-aware
scheduling of containers. Sensors, 21(12).
Gedeon, J., Brandherm, F., Egert, R., Grube, T., and
M
¨
uhlh
¨
auser, M. (2019). What the fog? edge comput-
ing revisited: Promises, applications and future chal-
lenges. IEEE Access, 7:152847–152878.
Haghi Kashani, M., Rahmani, A. M., and Jafari Nav-
imipour, N. (2020). Quality of service-aware ap-
proaches in fog computing. International Journal of
Communication Systems, 33(8).
Kayal, P. (2020). Kubernetes in fog computing: Feasibil-
ity demonstration, limitations and improvement scope
: Invited paper. In 2020 IEEE 6th World Forum on
Internet of Things (WF-IoT), pages 1–6.
Khan, W. Z., Ahmed, E., Hakak, S., Yaqoob, I., and Ahmed,
A. (2019). Edge computing: A survey. Future Gener-
ation Computer Systems, 97:219–235.
Manaouil, K. and Lebre, A. (2020). Kubernetes and the
Edge? Research Report RR-9370, Inria Rennes - Bre-
tagne Atlantique.
Nastic, S., Pusztai, T., Morichetta, A., Pujol, V. C., Dustdar,
S., Vii, D., and Xiong, Y. (2021). Polaris scheduler:
Edge sensitive and slo aware workload scheduling in
cloud-edge-iot clusters. In 2021 IEEE 14th Inter-
national Conference on Cloud Computing (CLOUD),
pages 206–216.
OASIS (2020). Topology and Orchestration Specification
for Cloud Applications Version 2.0. http://docs.oasis-
open.org/tosca/TOSCA/v2.0/TOSCA-v2.0.html.
Oleghe, O. (2021). Container placement and migration
in edge computing: Concept and scheduling models.
IEEE Access, 9:68028–68043.
Rodriguez, M. A. and Buyya, R. (2019). Container-based
cluster orchestration systems: A taxonomy and fu-
ture directions. Software: Practice and Experience,
49(5):698–719.
Rossi, F., Cardellini, V., Lo Presti, F., and Nardelli, M.
(2020). Geo-distributed efficient deployment of con-
tainers with kubernetes. Computer Communications,
159:161–174.
Sadri, A. A., Rahmani, A. M., Saberikamarposhti, M., and
Hosseinzadeh, M. (2021). Fog data management: A
vision, challenges, and future directions. Journal of
Network and Computer Applications, 174:102882.
Salaht, F. A., Desprez, F., and Lebre, A. (2020). An
overview of service placement problem in fog and
edge computing. ACM Comput. Surv., 53(3).
Tamburri, D. A., Van den Heuvel, W.-J., Lauwers,
C., Lipton, P., Palma, D., and Rutkowski, M.
(2019). Tosca-based intent modelling: goal-modelling
for infrastructure-as-code. SICS Software-Intensive
Cyber-Physical Systems, 34(2):163–172.
Toka, L. (2021). Ultra-reliable and low-latency computing
in the edge with kubernetes. Journal of Grid Comput-
ing, 19(3):31.
Varshney, P. and Simmhan, Y. (2019). Characterizing appli-
cation scheduling on edge, fog and cloud computing
resources. CoRR, abs/1904.10125.
Wojciechowski, L., Opasiak, K., Latusek, J., Wereski, M.,
Morales, V., Kim, T., and Hong, M. (2021). Netmarks:
Network metrics-aware kubernetes scheduler powered
by service mesh. In IEEE INFOCOM 2021 - IEEE
Conference on Computer Communications, pages 1–
9.
CLOSER 2022 - 12th International Conference on Cloud Computing and Services Science
198