ACKNOWLEDGEMENTS
The study was developed in the framework of INAIL
(italian National Institute for Insurance against
Accidents at Work) project: BRIC ID 60/2 -
Valutazione e comparazione dei livelli di
informazione ottenibili da remoto con sensoristica
ottica innovativa per l’identificazione di MCA in
diversi contesti del territorio nazionale; confronto dei
dati ottenuti con risultati analitici acquisiti in
laboratorio. Definizione di tecniche di
campionamento ed analisi per il monitoraggio della
presenza di erionite.
REFERENCES
Amano, Y, Takagi, N and Getz, AFH. (2008). A study on
the classification of urban region using hyper-spectrum
data at AVIRIS. In: Geoscience and Remote Sensing
Symposium, 2008. IGARSS 2008. IEEE International.,
Boston, MA, USA: IEEE, pp. 687-690.
Aplin, P. & Smith, G.M. (2008). Advances in Object Based
Image Classification. The International Archives of the
Photogrammetry, Remote Sensing and Spatial
Informatio Sciences, Beijing, Vol.37, 725-728.
http://www.isprs.org/proceedings/XXXVII/congress/7
_pdf/4_WG-VII-4/45.pdf
Ballabio, D. & Todeschini, R. (2009). Multivariate classifi-
cation for qualitative analysis. Infrared spectroscopy for
food quality analysis and control, 83, e102.
Biancolillo, A., Bucci, R., Magrì, A. L., Magrì, A. D., &
Marini, F. (2014). Data-fusion for multiplatform
characterization of an Italian craft beer aimed at its
authentication. Analytica chimica acta, 820, 23-31.
Blaschke, T. (2010). Object-based Image Analysis for
Remote Sensing. ISPRS Journal of Photogrammetry
and Remote Sensing, 65, 2-16.)
Bonifazi, G., Capobianco, G., & Serranti, S. (2018).
Asbestos containing materials detection and
classification by the use of hyperspectral imaging.
Journal of hazardous materials, 344, 981-993.
Bonifazi, G., Capobianco, G., & Serranti, S. (2018).
Asbestos containing materials detection and
classification by the use of hyperspectral imaging.
Journal of hazardous materials, 344, 981-993.
Bonifazi, G., Capobianco, G., & Serranti, S. (2019).
Hyperspectral imaging and hierarchical PLS-DA
applied to asbestos recognition in construction and
demolition waste. Applied Sciences, 9(21), 4587.
Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984).
Cart. Classification and Regression Trees; Wadsworth
and Brooks/Cole: Monterey, CA, USA.
Bro, R., & Smilde, A. K. (2014). Principal component
analysis. Analytical methods, 6(9), 2812-2831.
Chen, Z., Ning, X. and Zhang, J. (2012). Urban Land Cover
Classification Based on WorldView-2 Image Data.
IEEE International Symposium on Geomatics for
Integrated Water Resource Management, Lanzhou, 19-
21 October 2012, 1-5.
Deconinck, E., Zhang, M. H., Coomans, D., & Vander
Heyden, Y. (2006). Classification tree models for the
prediction of blood− brain barrier passage of drugs.
Journal of chemical information and modeling, 46(3),
1410-1419.
Directive 2003/18/EC of the European Parliament and of
the Council of 27 March 2003 amending Council
Directive 83/477/EEC on the protection of workers
from the risks related to exposure to asbestos at work.
Frassy, F., Marchesi, A., Candiani, G., Rusmini, Marco.,
Maianti, P., Marchesi, A., Rota Nodari, F., Della Via,
G., Albonico, C., Gianinetto, Marco. (2014) "Mapping
Asbestos Cement Roofing with Hyperspectral Remote
Sensing over a Large Mountain Region of the Italian
Western Alps," Sensors, vol. 14, no. 9, pp. 1590015913,
doi: 10.3390/s140915900.
Marino, C. M., Panigada, C. and Busetto, L. (2001)
Airborne hyperspectral remote sensing applications in
urban areas: asbestos concrete sheeting identification
and mapping, IEEE/ISPRS Joint Workshop on Remote
Sensing and Data Fusion over Urban Areas (Cat.
No.01EX482), pp. 212216, doi: 10.1109/DFUA.20
01.985882.
Massarelli, C., Matarrese, R., Uricchio, V. F., Muolo, M.
R., Laterza M. & Ernesto L. (2017) Detection of
asbestos containing materials in agroecosystem by the
use of airborne hyperspectral CASI1500 sensor
including the limited use of two UAVs equipped with
RGB cameras. International Journal of Remote
Sensing, 38:810, 21352149, DOI: 10.1080/01431161.
2016.1226528
Paglietti, F., Malinconico, S., della Staffa, B. C.,
Bellagamba, S., & De Simone, P. (2016). Classification
and management of asbestos-containing waste:
European legislation and the Italian experience. Waste
management, 50, 130-150.
Rinnan, Å., Van Den Berg, F., & Engelsen, S. B. (2009).
Review of the most common pre-processing techniques
for near-infrared spectra. TrAC Trends in Analytical
Chemistry, 28(10), 1201-1222.
Serranti, S., Bonifazi, G., Capobianco, G., Malinconico, S.,
& Paglietti, F. (2019, May). Hyperspectral imaging
applied to asbestos containing materials detection:
specimen preparation and handling. In Advanced
Environmental, Chemical, and Biological Sensing
Technologies XV (Vol. 11007, p. 110070S).
International Society for Optics and Photonics.
The PRISMA mission (PDF). ASI. 4 September 2009.
Archived from the original (PDF) on 4 October 2013.
Retrieved 23 August 2013.
Wise, B. M., Gallagher, N. B., Bro, R., Shaver, J. M.,
Windig, W., & Koch, R. S. (2006). Chemometrics
tutorial for PLS_Toolbox and Solo. Eigenvector
Research, Inc, 3905, 102-159.
Shao, Y., Lunetta, R. S. (2012) Comparison of support
vector machine, neural network, and CART algorithms
for the landcover classification using limited training
data points. ISPRS Journal of Photogrammetry and
Remote Sensing, Volume 70, Pages 7887.