REFERENCES
Alshuqayran, N., Ali, N., and Evans, R. (2018). To-
wards micro service architecture recovery: An em-
pirical study. In Gorton, I., Buhnova, B., Ernst, N.,
and Szyperski, C., editors, 2018 IEEE International
Conference on Software Architecture, pages 47–4709.
IEEE. https://doi.org/10.1109/ICSA.2018.00014.
Brogi, A., Neri, D., and Soldani, J. (2017). Dockerfinder:
Multi-attribute search of docker images. In 2017
IEEE International Conference on Cloud Engineering
(IC2E), pages 273–278. https://doi.org/10.1109/IC2E.
2017.41.
Brogi, A., Neri, D., and Soldani, J. (2020). Freshen-
ing the air in microservices: Resolving architectural
smells via refactoring. In Yangui, S., Bouguettaya,
A., Xue, X., Faci, N., Gaaloul, W., Yu, Q., Zhou,
Z., Hernandez, N., and Nakagawa, E. Y., editors,
Service-Oriented Computing – ICSOC 2019 Work-
shops, pages 17–29, Cham. Springer. https://doi.org/
10.1007/978-3-030-45989-5 2.
Coleman, B. (2021). KubeView. https://github.com/
benc-uk/kubeview.
Forti, S., Bisicchia, G., and Brogi, A. (2022). Declar-
ative continuous reasoning in the cloud-IoT contin-
uum. Journal of Logic and Computation. https:
//doi.org/10.1093/logcom/exab083.
Google Cloud (2021). Online Boutique. https://github.com/
GoogleCloudPlatform/microservices-demo.
Granchelli, G., Cardarelli, M., Di Francesco, P., Malavolta,
I., Iovino, L., and Di Salle, A. (2017a). MicroART:
A software architecture recovery tool for maintain-
ing microservice-based systems. In Malavolta, I. and
Capilla, R., editors, 2017 IEEE International Confer-
ence on Software Architecture Workshops, pages 298–
302. IEEE. https://doi.org/10.1109/ICSAW.2017.9.
Granchelli, G., Cardarelli, M., Di Francesco, P., Malavolta,
I., Iovino, L., and Di Salle, A. (2017b). Towards
recovering the software architecture of microservice-
based systems. In Malavolta, I. and Capilla, R., edi-
tors, 2017 IEEE International Conference on Software
Architecture Workshops, pages 46–53. IEEE. https:
//doi.org/10.1109/ICSAW.2017.48.
Guidotti, R., Soldani, J., Neri, D., Brogi, A., and Pe-
dreschi, D. (2019). Helping your Docker images
to spread based on explainable models. In Brefeld,
U., Curry, E., Daly, E., MacNamee, B., Marascu,
A., Pinelli, F., Berlingerio, M., and Hurley, N., edi-
tors, Machine Learning and Knowledge Discovery in
Databases, pages 205–221, Cham. Springer. https:
//doi.org/10.1007/978-3-030-10997-4
13.
Hohpe, G. and Woolf, B. (2003). Enterprise Integration
Patterns: Designing, Building, and Deploying Mes-
saging Solutions. Addison-Wesley, 1st edition.
Instana (2021). Instana. https://www.instana.com.
Instana (2021). Robot Shop. https://github.com/instana/
robot-shop.
Istio (2021). Book Info. https://github.com/istio/istio/tree/
master/samples/bookinfo.
Jaeger (2021). Jaeger. https://www.jaegertracing.io.
Kratzke, N. and Quint, P.-C. (2017). Understanding cloud-
native applications after 10 years of cloud comput-
ing - a systematic mapping study. Journal of Systems
and Software, 126:1–16. https://doi.org/10.1016/j.jss.
2017.01.001.
Ma, S., Fan, C., Chuang, Y., Lee, W., Lee, S., and Hsueh,
N. (2018). Using service dependency graph to ana-
lyze and test microservices. In Reisman, S., Ahamed,
S. I., Demartini, C., Conte, T. M., Liu, L., Clay-
comb, W. R., Nakamura, M., Tovar, E., Cimato, S.,
Lung, C.-H., Takakura, H., Yang, J.-J., Akiyama, T.,
Zhang, Z., and Hasan, K., editors, 2018 IEEE 42nd
Annual Computer Software and Applications Confer-
ence, pages 81–86. IEEE. https://doi.org/10.1109/
COMPSAC.2018.10207.
Muntoni, G., Soldani, J., and Brogi, A. (2021). Min-
ing the architecture of microservice-based applica-
tions from their kubernetes deployment. In Zirpins,
C., Paraskakis, I., Andrikopoulos, V., Kratzke, N.,
Pahl, C., El Ioini, N., Andreou, A. S., Feuerlicht,
G., Lamersdorf, W., Ortiz, G., Van den Heuvel, W.-
J., Soldani, J., Villari, M., Casale, G., and Plebani,
P., editors, Advances in Service-Oriented and Cloud
Computing, pages 103–115, Cham. Springer. https:
//doi.org/10.1007/978-3-030-71906-7 9.
Neri, D., Soldani, J., Zimmermann, O., and Brogi,
A. (2020). Design principles, architec-
tural smells and refactorings for microser-
vices: a multivocal review. SICS Software-
Intensive Cyber-Physical Systems, 35(1):3–15.
https://doi.org/10.1007/s00450-019-00407-8.
OASIS (2020). TOSCA simple profile in
YAML. v1.3, https://docs.oasis-open.org/
tosca/TOSCA-Simple-Profile-YAML/v1.3/
TOSCA-Simple-Profile-YAML-v1.3.pdf.
OpenZipkin (2021). Zipkin. https://zipkin.io.
Rademacher, F., Sachweh, S., and Z
¨
undorf, A. (2020).
A modeling method for systematic architecture re-
construction of microservice-based software systems.
In Nurcan, S., Reinhartz-Berger, I., Soffer, P.,
and Zdravkovic, J., editors, Enterprise, Business-
Process and Information Systems Modeling, pages
311–326, Cham. Springer. https://doi.org/10.1007/
978-3-030-49418-6
21.
Soldani, J., Muntoni, G., Neri, D., and Brogi, A. (2021).
The µTOSCA toolchain: Mining, analyzing, and
refactoring microservice-based architectures. Soft-
ware: Practice and Experience, 51(7):1591–1621.
https://doi.org/10.1002/spe.2974.
Soldani, J., Tamburri, D. A., and Van Den Heuvel, W.-J.
(2018). The pains and gains of microservices: A sys-
tematic grey literature review. Journal of Systems and
Software, 146:215–232. https://doi.org/10.1016/j.jss.
2018.09.082.
Weaveworks (2021). WeaveScope. https://www.weave.
works/oss/scope.
Zimmermann, O. (2017). Microservices tenets.
Computer Science: Research and Develop-
ment, 32(3–4):301–310. https://doi.org/10.1007/
s00450-016-0337-0.
Offline Mining of Microservice-based Architectures
73