structure learning materials. Given the significant
savings that such systems can represent in terms of
time and effort from education professionals, we are
convinced that they will become the angular stone of
future education tools and we thus encourage further
work on this topic.
REFERENCES
Chen, A., Stanovsky, G., Singh, S., and Gardner, M. (2020).
Mocha: A dataset for training and evaluating genera-
tive reading comprehension metrics. In EMNLP.
Cheng, Y., Ding, Y., Foucher, S., Pascual, D., Richter,
O., Volk, M., and Wattenhofer, R. (2021). Wiki-
flash: Generating flashcards from wikipedia articles.
In Mantoro, T., Lee, M., Ayu, M. A., Wong, K. W.,
and Hidayanto, A. N., editors, Neural Information
Processing, pages 138–149, Cham. Springer Interna-
tional Publishing.
Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A.,
Schoenick, C., and Tafjord, O. (2018). Think you have
solved question answering? try arc, the ai2 reasoning
challenge. arXiv:1803.05457v1.
Dario, N., Duque, N., Jimenez, C., ALBERTO, J., and
LUNA, G. (2005). Ia planning for automatic gener-
ation of customized virtual courses.
del Carmen Rodr
´
ıguez-Hern
´
andez, M., de la Vega Ro-
drig
´
alvarez-Chamarro, M., Vea-Murguia Merck, J. I.,
Ballano, A. E., Lafuente, M. A., and del Hoyo-
Alonso, R. (2020). Motoria: Automatic e-learning
course generation system. In Proceedings of the 2020
6th International Conference on Computer and Tech-
nology Applications, ICCTA ’20, page 92–96, New
York, NY, USA. Association for Computing Machin-
ery.
Fisch, A., Talmor, A., Jia, R., Seo, M., Choi, E., and Chen,
D. (2019). MRQA 2019 shared task: Evaluating gen-
eralization in reading comprehension. In Proceedings
of 2nd Machine Reading for Reading Comprehension
(MRQA) Workshop at EMNLP.
Guetl, C. (2008). Moving towards a fully automatic knowl-
edge assessment tool. International Journal of Emerg-
ing Technologies in Learning, 3.
Karampiperis, P. and Sampson, D. (2004). Adaptive instruc-
tional planning using ontologies. pages 0–.
Lai, G., Xie, Q., Liu, H., Yang, Y., and Hovy, E. (2017).
Race: Large-scale reading comprehension dataset
from examinations.
Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013).
Efficient estimation of word representations in vector
space.
Parahonco, A. and Petic, M. (2021). Generation and use of
educational content within adaptive learning. In Work-
shop on Intelligent Information Systems, volume 1,
page 156.
Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush,
A. V., and Gulin, A. (2019). Catboost: unbiased boost-
ing with categorical features.
Qiu, Z., Wu, X., and Fan, W. (2020). Automatic distractor
generation for multiple choice questions in standard
tests.
Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. (2020).
Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning
Research, 21(140):1–67.
Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P.
(2016). SQuAD: 100,000+ Questions for Ma-
chine Comprehension of Text. arXiv e-prints, page
arXiv:1606.05250.
Reimers, N. and Gurevych, I. (2019). Sentence-bert: Sen-
tence embeddings using siamese bert-networks. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.
Ren, S. and Zhu, K. Q. (2020). Knowledge-driven distractor
generation for cloze-style multiple choice questions.
Sanh, V., Debut, L., Chaumond, J., and Wolf, T. (2020).
Distilbert, a distilled version of bert: smaller, faster,
cheaper and lighter.
Sathiyamurthy, K., Geetha, T. V., and Senthilvelan, M.
(2012). An approach towards dynamic assembling of
learning objects. In Proceedings of the International
Conference on Advances in Computing, Communica-
tions and Informatics, ICACCI ’12, page 1193–1198,
New York, NY, USA. Association for Computing Ma-
chinery.
Trask, A., Michalak, P., and Liu, J. (2015). sense2vec - a
fast and accurate method for word sense disambigua-
tion in neural word embeddings.
Vassileva, J. (1992). Dynamic courseware generation. 5:87–
102.
Vrande
ˇ
ci
´
c, D. and Kr
¨
otzsch, M. (2014). Wikidata: A
free collaborative knowledgebase. Commun. ACM,
57(10):78–85.
Word2Course: Creating Interactive Courses from as Little as a Keyword
115