Operator/Port Authority Services, it offers AI
integration for analytics and prediction systems. And
it is a candidate for many future research and studies
to be implemented in other areas like Unmanned
aerial Vehicles.
AeroMACS has been implemented in many
airports and it is showing a great promise and
potential.
ACKNOWLEDGEMENTS
This paper is an output of the project KEGA 040ŽU -
4/2022.
REFERENCES
Bartoli, G., Fantacci, R., Marabissi, D. (2013). AeroMACS:
A new perspective for mobile airport communications
and services. IEEE Wireless Communications, 20(6),
44–50. doi:10.1109/mwc.2013.6704473.
Budinger, J. M., Hall, E. (2011). Aeronautical mobile
airport communications system (AeroMACS). National
Aeronautics and Space Administration, Glenn Research
Center.
Hall, W., Magner, J., Zelkin, N., Henriksen, S., Phillips, B.,
Apaza, R. (2012). C-Band airport surface
communications system standards development-
aeromacs prototype test results summary. In 2012
Integrated Communications, Navigation and
Surveillance Conference (pp. 1-16). IEEE.
Hrúz, M., Pecho, P., Socha, V., Bugaj, M. (2022). Use of
the principal component analysis for classification of
aircraft components failure conditions using
vibrodiagnostics. Paper presented at the Transportation
Research Procedia,59, 166-173. doi:10.1016/j.trpro.20
21.11.108.
Kalapos, G., Labun, J., Kurdel, P., Ceskovic, M. (2019).
Measurement of vehicle antenna parameters. Paper
presented at the MOSATT 2019 - Modern Safety
Technologies in Transportation International Scientific
Conference, Proceedings, 76-79.
doi:10.1109/MOSATT48908.2019.8944111.
Kanada, N., Sumiya, Y., Yonemoto, N., Kohmura, A.,
Futatsumori, S., Honda, J., Okada, K. (2013). Signal
evaluation on airport surface in 5.1Ghz band. 2013
Integrated Communications, Navigation and
Surveillance Conference (ICNS). doi:10.1109/icn
surv.2013.6548514.
Koman, G., Kubina, M., Holubčík, M., Soviar, J. (2018).
Possibilities of application a big data in the company
innovation process, doi:10.1007/978-3-319-95204-
8_54.
Kraus, J., Pleninger, S., Hospodka, J. (2019). Methodology
for positioning of GNSS interference detector. Paper
presented at the ICMT 2019 - 7th International
Conference on Military Technologies, Proceedings,
doi:10.1109/MILTECHS.2019.8870015.
Materna, M. (2019). Variants of air navigation service
providers’ business models. Transportation Research
Procedia, 2019, 40, pp. 1127–1133.
Materna, M., Galieriková, A., (2019). A new approach to
classification of air navigation service providers in the
context of commercialization. Transportation Research
Procedia, 2019, 43, pp. 139–146.
Naganawa J., Morioka K., Honda J., N. Kanada, N.
Yonemoto, Y. Sumiya. (2017). Antenna configuration
mitigating ground reflection fading on airport surface
for AeroMACS. In 2017 IEEE Conference on Antenna
Measurements & Applications (CAMA), pp. 91-94,
doi: 10.1109/CAMA.2017.8273487.
Rostáš, J., Škultéty, F. (2017). Are today's pilots ready for
full use of GNSS technologies? Paper presented at the
Transportation Research Procedia, 28, 217-225.
doi:10.1016/j.trpro.2017.12.188.
Škultéty, F., Badánik, B., Bartoš, M., Kandera, B. (2018).
Design of controllable unmanned rescue parachute
wing. Paper presented at the Transportation Research
Procedia, 35 220-229. doi:10.1016/j.trpro.2018.12.026.
Tang, Y., Zhu, F., Chen, Y. (2021). For More Reliable
Aviation Navigation: Improving the Existing
Assessment of Airport Electromagnetic Environment.
IEEE Instrumentation & Measurement Magazine,
24(4), 104–112. doi:10.1109/mim.2021.9448266.
Shin, H. G.; Kim, H. J.; Lee, S. W.; Yoon, H. G.; Choi, Y.
H. (2021). Calculation of AeroMACS Spectrum
Requirements Based on Traffic Simulator. Sensors
2021, 21, 3343. https://doi.org/10.3390/s21103343.