from cve vulnerability information using natural lan-
guage processing technique. In Proceedings of the
54th Hawaii International Conference on System Sci-
ences, page 6996.
Kanakogi, K., Washizaki, H., Fukazawa, Y., Ogata, S.,
Okubo, T., Kato, T., Kanuka, H., Hazeyama, A., and
Yoshioka, N. (2021b). Tracing cve vulnerability infor-
mation to capec attack patterns using natural language
processing techniques. Information, 12(8):298.
Khan, N. A., Brohi, S. N., and Zaman, N. (2020). Ten
deadly cyber security threats amid covid-19 pan-
demic.
Kholidy, H. A. (2022). Multi-layer attack graph analysis in
the 5g edge network using a dynamic hexagonal fuzzy
method. Sensors, 22(1):9.
Liu, N., Zhang, J., Zhang, H., and Liu, W. (2010). Secu-
rity assessment for communication networks of power
control systems using attack graph and mcdm. IEEE
Transactions on Power Delivery, 25(3):1492–1500.
Liu, X., Qian, C., Hatcher, W. G., Xu, H., Liao, W., and Yu,
W. (2019). Secure internet of things (iot)-based smart-
world critical infrastructures: Survey, case study and
research opportunities. IEEE Access, 7:79523–79544.
Mavroeidis, V. and Bromander, S. (2017). Cyber threat in-
telligence model: an evaluation of taxonomies, shar-
ing standards, and ontologies within cyber threat intel-
ligence. In 2017 European Intelligence and Security
Informatics Conference (EISIC), pages 91–98. IEEE.
MITRE (2021). The MITRE Corporation.
https://cve.mitre.org/. [Online; accessed 06-
December-2021].
NIST (2021). National Vulerability Database (NVD).
https://nvd.nist.gov/vuln/data-feeds. [Online; ac-
cessed 24-January-2022].
Opricovic, S. and Tzeng, G.-H. (2004). Compromise so-
lution by mcdm methods: A comparative analysis of
vikor and topsis. European journal of operational re-
search, 156(2):445–455.
Pawlicka, A., Pawlicki, M., Kozik, R., and Chora
´
s, R. S.
(2021). A systematic review of recommender sys-
tems and their applications in cybersecurity. Sensors,
21(15):5248.
Pimenta Rodrigues, G. A., de Oliveira Albuquerque, R.,
Gomes de Deus, F. E., De Oliveira J
´
unior, G. A.,
Garc
´
ıa Villalba, L. J., Kim, T.-H., et al. (2017). Cyber-
security and network forensics: Analysis of malicious
traffic towards a honeynet with deep packet inspec-
tion. Applied Sciences, 7(10):1082.
Polatidis, N. and Georgiadis, C. K. (2017). A dy-
namic multi-level collaborative filtering method for
improved recommendations. Computer Standards &
Interfaces, 51:14–21.
Polatidis, N., Pavlidis, M., and Mouratidis, H. (2018).
Cyber-attack path discovery in a dynamic supply
chain maritime risk management system. Computer
Standards & Interfaces, 56:74–82.
Polatidis, N., Pimenidis, E., Pavlidis, M., and Mouratidis,
H. (2017). Recommender systems meeting security:
From product recommendation to cyber-attack pre-
diction. In International Conference on Engineer-
ing Applications of Neural Networks, pages 508–519.
Springer.
Polatidis, N., Pimenidis, E., Pavlidis, M., Papastergiou, S.,
and Mouratidis, H. (2020). From product recommen-
dation to cyber-attack prediction: generating attack
graphs and predicting future attacks. Evolving Sys-
tems, 11(3):479–490.
Rapid7 (2021). The Metasploitable 3 Linux VM.
https://github.com/rapid7/metasploitable3. [Online;
accessed 10-January-2022].
Rodriguez, L. G. A., Trazzi, J. S., Fossaluza, V., Campiolo,
R., and Batista, D. M. (2018). Analysis of vulnera-
bility disclosure delays from the national vulnerabil-
ity database. In Anais do I Workshop de Seguranc¸a
Cibern
´
etica em Dispositivos Conectados. SBC.
Rytel, M., Felkner, A., and Janiszewski, M. (2020). To-
wards a safer internet of things—a survey of iot vul-
nerability data sources. Sensors, 20(21):5969.
Security, O. (2021). The Exploit Database.
https://www.exploit-db.com/. [Online; accessed
10-January-2022].
Shah, S. and Mehtre, B. M. (2015). An overview of
vulnerability assessment and penetration testing tech-
niques. Journal of Computer Virology and Hacking
Techniques, 11(1):27–49.
Thamilarasu, G. and Chawla, S. (2019). Towards deep-
learning-driven intrusion detection for the internet of
things. Sensors, 19(9):1977.
Valea, O. and Opris¸a, C. (2020). Towards pentesting au-
tomation using the metasploit framework. In 2020
IEEE 16th International Conference on Intelligent
Computer Communication and Processing (ICCP),
pages 171–178. IEEE.
VULNERS, I. (2021). Vulners, inc. https://vulners.com/.
[Online; accessed 10-January-2022].
Wang, J. A. and Guo, M. (2009). Ovm: an ontology for
vulnerability management. In Proceedings of the 5th
Annual Workshop on Cyber Security and Information
Intelligence Research: Cyber Security and Informa-
tion Intelligence Challenges and Strategies, pages 1–
4.
Yaqoob, I., Hussain, S. A., Mamoon, S., Naseer, N., Akram,
J., and ur Rehman, A. (2017). Penetration test-
ing and vulnerability assessment. Journal of Net-
work Communications and Emerging Technologies
(JNCET) www. jncet. org, 7(8).
Zhou, S., Liu, J., Hou, D., Zhong, X., and Zhang, Y. (2021).
Autonomous penetration testing based on improved
deep q-network. Applied Sciences, 11(19):8823.
REVS: A Vulnerability Ranking Tool for Enterprise Security
133