networks. ACM Trans. Embedded Comput Syst
(TECS), 6(4), 32-es.
Katkar, A. A., Shinde, N. N., & Patil, P. S. (2011).
Performance & evaluation of industrial solar cell wrt
temperature and humidity. International Journal of
research In Mechanical engineering and technology,
1(1), 69-73.
Khan, J. A., Qureshi, H. K., & Iqbal, A. (2015). Energy
management in wireless sensor networks: A survey.
Computers & Electrical Engineering, 41, 159-176.
Kosmopoulos, P. G., Kazadzis, S., Taylor, M.,
Athanasopoulou, E., Speyer, O., Raptis, P. I., &
Kontoes, C. (2017). Dust impact on surface solar
irradiance assessed with model simulations, satellite
observations and ground-based measurements.
Atmospheric Measurement Techniques, 10(7), 2435.
Loh, F., Geißler, S., Schaible, F., & Hoßfeld, T. (2021,
January). Talk to Me: Investigating the Traffic
Characteristics of Amazon Echo Dot and Google
Home. In 2020 IEEE Eighth International Conference
on Communications and Electronics (ICCE) (pp. 521-
526). IEEE
Mazón, R., Káiser, A. S., Zamora, B., García, J. R., & Vera,
F. (2011, November). Analytical model and
experimental validation of the heat transfer and the
induced flow in a PV cooling duct in environmental
conditions. In World Renewable Energy Congress-
Sweden; 8-13 May; 2011; (No. 057, pp. 2907-2915).
Micheli, L., & Muller, M. (2017). An investigation of the
key parameters for predicting PV soiling losses.
Progress in photovoltaics: research and applications,
25(4), 291-307.
Micheli, L., Deceglie, M. G., & Muller, M. (2019).
Predicting photovoltaic soiling losses using
environmental parameters: An update. Progress in
Photovoltaics: Research and Applications, 27(3), 210-
219.
Newell, D., & Duffy, M. (2019). Review of power
conversion and energy management for low-power,
low-voltage energy harvesting powered wireless
sensors. IEEE Trans. Power Electron, 34(10), 9794.
Piñuela, M., Mitcheson, P. D., & Lucyszyn, S. (2013).
Ambient RF energy harvesting in urban and semi-urban
environments. IEEE Trans. Microw. Theory techn,
61(7), 2715-2726.
Piorno, J. R., Bergonzini, C., Atienza, D., & Rosing, T. S.
(2009, May). Prediction and management in energy
harvested wireless sensor nodes. In 2009 1st
International Conference on Wireless Communication,
Vehicular Technology, Information Theory and
Aerosp. Electron Syst Technol (pp. 6-10). IEEE.
Rahman, M. M., Hasanuzzaman, M., & Abd Rahim, N.
(2017). Effects of operational conditions on the energy
efficiency of photovoltaic modules operating in
Malaysia. Journal of cleaner production, 143, 912-924.
Rahman, M. M., Hasanuzzaman, M., & Rahim, N. A.
(2015). Effects of various parameters on PV-module
power and efficiency. Energy Conversion and
Management, 103, 348-358.
Said, S. A., & Walwil, H. M. (2014). Fundamental studies
on dust fouling effects on PV module performance.
Solar Energy, 107, 328-337.
Said, S. A., Al-Aqeeli, N., & Walwil, H. M. (2015). The
potential of using textured and anti-reflective coated
glasses in minimizing dust fouling. Solar Energy, 113,
295-302.
Sarver, T., Al-Qaraghuli, A., & Kazmerski, L. L. (2013). A
comprehensive review of the impact of dust on the use
of solar energy: History, investigations, results,
literature, and mitigation approaches. Renewable and
sustainable energy Reviews, 22, 698-733.
Sayigh, A., Al-Jandal, S., & Ahmed, H. (1985, September).
Dust effect on solar flat surfaces devices in Kuwait. In
Proceedings of the workshop on the physics of non-
conventional energy sources and materials science for
energy (pp. 353-367). ICTP Triest, Italy.
Sharma, N., Gummeson, J., Irwin, D., & Shenoy, P. (2010,
June). Cloudy computing: Leveraging weather
forecasts in energy harvesting sensor systems. In 2010
7th Annual IEEE Communications Society Conference
on Sensor, Mesh and Ad Hoc Communications and
Networks (SECON) (pp. 1-9). IEEE.
Sparks, P. (2017). The route to a trillion devices. White
Paper, ARM.
Tong, B., Wang, G., Zhang, W., & Wang, C. (2011). Node
reclamation and replacement for long-lived sensor
networks. IEEE Trans. Parallel Distrib. Syst, 22(9),
1550-1563.
Toth, S., Hannigan, M., Vance, M., & Deceglie, M. (2020).
Predicting photovoltaic soiling from air quality
measurements. IEEE J. Photovolt, 10(4), 1142-1147.
Weather API. (n.d.). Retrieved 11 January 2022, from
Openweathermap.org website: https://openweather
map.org/api
Yadav, A. K., & Chandel, S. S. (2014). Solar radiation
prediction using Artificial Neural Network techniques:
A review. Renewable and sustainable energy reviews,
33, 772-781.
Yang, H. T., Huang, C. M., Huang, Y. C., & Pai, Y. S.
(2014). A weather-based hybrid method for 1-day
ahead hourly forecasting of PV power output. IEEE
trans. Sustain.Energy, 5(3), 917-92.