Chermann, E. (2020, March 1). Enseignement en ligne: Les
1001 secrets d’un MOOC qui cartonne. Le Monde.
https://www.lemonde.fr/economie/article/2020/03/01/
enseignement-en-ligne-les-1001-secrets-d-un-mooc-
qui-cartonne_6031425_3234.html
Conati, C., Porayska-Pomsta, K., & Mavrikis, M. (2018).
AI in Education needs interpretable machine learning:
Lessons from Open Learner Modelling.
ArXiv:1807.00154 [Cs]. http://arxiv.org/abs/1807.00
154
Csikszentmihalyi, M. (1975). Beyond Boredom and
Anxiety: The Notion of Flow in Work and Play. San
Francisco: Jossey Press.
Csikszentmihalyi, M., Abuhamdeh, S., & Nakamura, J.
(2005). Flow. In A. J. Elliot & C. S. Dweck (Eds.),
Handbook of competence and motivation (pp. 598–
608). Guilford Publications.
Csikszentmihalyi, M., & Csikszentmihalyi, I. S. (1988).
Optimal experience: Psychological studies of flow in
consciousness. Cambridge University Press.
Das, K., & Behera, R. N. (2017). A Survey on Machine
Learning: Concept, Algorithms and Applications.
International Journal of Innovative Research in
Computer and Communication Engineering, 5(2).
https://doi.org/10.15680/IJIRCCE.2017. 0502001
Efklides, A. (2005). Feelings and emotions in the learning
process. Elsevier.
EFRN. (2014). What is Flow ? European Flow Researchers
Network. https://efrn.webs.com/
El Mawas, N., Gilliot, J.-M., Garlatti, S., Euler, R., &
Pascual, S. (2018). Towards personalized content in
massive open online courses. 10th International
Conference on Computer Supported Education.
https://doi.org/10.5220/0006816703310339
El Mawas, N., & Heutte, J. (2019). A Flow Measurement
Instrument to Test the Students’ Motivation in a
Computer Science Course. CSEDU.
https://doi.org/10.5220/0007771504950505
Ferreira Marques, J., & Bernardino, J. (2020). Analysis of
Data Anonymization Techniques. Proceedings of the
12th International Joint Conference on Knowledge
Discovery, Knowledge Engineering and Knowledge
Management, 235–241. https://doi.org/10.5220/0010
142302350241
Fu, F.-L., Su, R.-C., & Yu, S.-C. (2009). EGameFlow: A
scale to measure learners’ enjoyment of e-learning
games. Computers & Education, 52(1), 101–112.
https://doi.org/10.1016/j.compedu.2008.07.004
Géron, A. (2019). Hands-on machine learning with Scikit-
Learn, Keras, and TensorFlow: Concepts, tools, and
techniques to build intelligent systems (Second edition).
O’Reilly Media, Inc.
Heutte, J. (2015). L’environnement optimal
d’apprentissage vidéo-ludique: Contribution de la
psychologie positive à la définition d’une ingénierie
ludo-éduquante autotélique. Séminaire CNAM‑ENJIM
“Bases Cognitives, Sociales et Émotionnelles Des Jeux
et Médias Interactifs Numériques.”
Heutte, J. (2019). Les fondements de l’éducation positive:
Perspective psychosociale et systémique de
l’apprentissage. Dunod.
Heutte, J., Fenouillet, F., Boniwell, I., Martin-Krumm, C.,
& Csikszentmihalyi, M. (2014, October 20). Optimal
learning experience in digital environments:
Theoretical concepts, measure and modelisation.
Symposium “Digitial Learning in 21st Century
Universities.” https://hal.archives-ouvertes.fr/hal-
01470855
Heutte, J., Fenouillet, F., Kaplan, J., Martin-Krumm, C., &
Bachelet, R. (2016). The EduFlow model: A
contribution toward the study of optimal learning
environments. In Flow experience (pp. 127–143).
Springer.
Heutte, J., Fenouillet, F., Martin-Krumm, C., Boniwell, I.,
& Csikszentmihalyi, M. (2016, June 29). Proposal for a
conceptual evolution of the flow in education
(EduFlow) model. 8th European Conference on
Positive Psychology (ECPP 2016). https://hal.archives-
ouvertes.fr/hal-01470857
Heutte, J., Fenouillet, F., Martin-Krumm, C., Gute, G.,
Raes, A., Gute, D., Bachelet, R., & Csikszentmihalyi,
M. (2021). Optimal Experience in Adult Learning:
Conception and Validation of the Flow in Education
Scale (EduFlow-2). Frontiers in Psychology, 12,
828027. https://doi.org/10.3389/fpsyg.2021.828027
Hoffman, D. L., & Novak, T. P. (2009). Flow Online:
Lessons Learned and Future Prospects. Journal of
Interactive Marketing, 23, 23–34.
https://doi.org/10.1016/J.INTMAR.2008.10.003
Huang, M.-H. (2006). Flow, enduring, and situational
involvement in the Web environment: A tripartite
second-order examination. Psychology & Marketing,
23(5), 383–411. https://doi.org/10.1002/mar.20118
IBM. (2020, December 18). What is Machine Learning?
IBM Cloud Learn Hub. https://www.ibm.com/cloud/
learn/machine-learning
Jackson, S. A., & Eklund, R. C. (2002). Assessing flow in
physical activity: The flow state scale–2 and
dispositional flow scale–2. Journal of Sport and
Exercise Psychology, 24(2), 133–150.
https://doi.org/10.1123/jsep.24.2.133
Jordan, K. (2014). Initial trends in enrolment and
completion of massive open online courses. The
International Review of Research in Open and
Distributed Learning, 15(1). https://doi.org/10.19173/
irrodl.v15i1.1651
Jung, Y., & Lee, J. (2018). Learning Engagement and
Persistence in Massive Open Online Courses
(MOOCS). Computers & Education, 122, 9–22.
https://doi.org/10.1016/j.compedu.2018.02.013
Larson, R., & Csikszentmihalyi, M. (2014). The Experience
Sampling Method. In M. Csikszentmihalyi, Flow and
the Foundations of Positive Psychology (pp. 21–34).
Springer Netherlands. https://doi.org/10.1007/978-94-
017-9088-8_2
Leontiev, D. A. (2012). Motivation, consciousness and self-
regulation
. Nova Science Publishers.