here may help users of neutron beam facilities to plan
and carry out experiments at the neutron imaging
beamline. The work is also intended to be an initial
look at how the 3D reconstruction techniques could
be used at neutron imaging facilities to improve 3D
reconstructions with additional seeding and
supervised model-based denoising.
DISCLAIMER
Certain commercial equipment, instruments, or
materials (or suppliers, or software, ...) are identified
in this paper to foster understanding. Such
identification does not imply recommendation or
endorsement by the National Institute of Standards
and Technology, nor does it imply that the materials
or equipment identified are necessarily the best
available for the purpose.
REFERENCES
Bingham, P., Polsky, Y., & Anovitz, L. (2013). Neutron
imaging for geothermal energy systems. In P. R.
Bingham & E. Y. Lam (Eds.), Image Processing:
Machine Vision Applications VI (Vol. 8661, Issue 6, p.
86610K). SPIE. https://doi.org/10.1117/12.2004617
Brooks, A. J., Knapp, G. L., Yuan, J., Lowery, C. G., Pan,
M., Cadigan, B. E., Guo, S., Hussey, D. S., & Butler, L.
G. (2017). Neutron imaging of laser melted SS316 test
objects with spatially resolved small angle neutron
scattering. Journal of Imaging, 3(4), 1–11.
https://doi.org/10.3390/jimaging3040058
Chen, Y., Zhang, Y., Zhang, K., Deng, Y., Wang, S.,
Zhang, F., & Sun, F. (2016). FIRT: Filtered iterative
reconstruction technique with information restoration.
Journal of Structural Biology, 195(1), 49–61.
https://doi.org/10.1016/j.jsb.2016.04.015
Crete, F., Dolmiere, T., Ladret, P., & Nicolas, M. (2007a).
The blur effect: perception and estimation with a new
no-reference perceptual blur metric. In B. E. Rogowitz,
T. N. Pappas, & S. J. Daly (Eds.), Human Vision and
Electronic Imaging XII (Vol. 6492, p. 64920I). SPIE.
https://doi.org/10.1117/12.702790
Crete, F., Dolmiere, T., Ladret, P., & Nicolas, M. (2007b).
The blur effect: perception and estimation with a new
no-reference perceptual blur metric. In B. E. Rogowitz,
T. N. Pappas, & S. J. Daly (Eds.), Human Vision and
Electronic Imaging XII (Vol. 6492, p. 64920I). SPIE.
https://doi.org/10.1117/12.702790
Gates, C. H., Perfect, E., Lokitz, B. S., Brabazon, J. W.,
McKay, L. D., & Tyner, J. S. (2018). Transient analysis
of advancing contact angle measurements on polished
rock surfaces. Advances in Water Resources, 119, 142–
149. https://doi.org/10.1016/j.advwatres.2018.03.017
Hilger, A., Manke, I., Kardjilov, N., Osenberg, M.,
Markötter, H., & Banhart, J. (2018). Tensorial neutron
tomography of three-dimensional magnetic vector
fields in bulk materials. Nature Communications, 9(1),
1–7. https://doi.org/10.1038/s41467-018-06593-4
Hussey, D. S., Brocker, C., Cook, J. C., Jacobson, D. L.,
Gentile, T. R., Chen, W. C., Baltic, E., Baxter, D. V.,
Doskow, J., & Arif, M. (2015). A New Cold Neutron
Imaging Instrument at NIST. Physics Procedia, 69.
https://doi.org/10.1016/j.phpro.2015.07.006
Jau, Y. Y., Hussey, D. S., Gentile, T. R., & Chen, W.
(2020). Electric field imaging using polarized neutrons.
ArXiv, 3.
Kak, A. C., Slaney, M., & Wang, G. (2002). Principles of
Computerized Tomographic Imaging. Medical Physics,
29(1), 107–107. https://doi.org/10.1118/1.1455742
Kak, A.C., S. M. (n.d.). Principles of Tombgraphic
Imaging. Book.
Lewandowski, R., Cao, L., & Turkoglu, D. (2012). Noise
evaluation of a digital neutron imaging device. Nuclear
Instruments and Methods in Physics Research, Section
A: Accelerators, Spectrometers, Detectors and
Associated Equipment, 674, 46–50.
https://doi.org/10.1016/j.nima.2012.01.025
NIST Disclaimer Statement/NIST. (n.d.).
https://www.nist.gov/disclaimer
Palenstijn, W. J., Batenburg, K. J., & Sijbers, J. (2011a).
Performance improvements for iterative electron
tomography reconstruction using graphics processing
units (GPUs). Journal of Structural Biology, 176(2),
250–253.
Palenstijn, W. J., Batenburg, K. J., & Sijbers, J. (2011b).
Performance improvements for iterative electron
tomography reconstruction using graphics processing
units (GPUs). Journal of Structural Biology, 176(2),
250–253. https://doi.org/10.1016/j.jsb.2011.07.017
Pelt, D. M., & Sethian, J. A. (2017). A mixed-scale dense
convolutional neural network for image analysis.
Proceedings of the National Academy of Sciences of the
United States of America, 115(2), 254–259.
https://doi.org/10.1073/pnas.1715832114
Petruccelli, J. C., Tian, L., & Barbastathis, G. (n.d.).
imaging. 2, 2–4.
Rauch, H., & Werner, S. A. (2015). Neutron Interferometry
2nd Edn. In Neutron Interferometry 2nd Edn. Oxford
University Press. https://doi.org/10.1093/acprof:oso/
9780198712510.001.0001
Schofield, R., King, L., Tayal, U., Castellano, I., Stirrup, J.,
Pontana, F., Earls, J., & Nicol, E. (2020). Image
reconstruction: Part 1-understanding filtered back
projection, noise and image acquisition.
https://doi.org/10.1016/j.jcct.2019.04.008
Strobl, M. (2014). General solution for quantitative dark-
field contrast imaging with grating interferometers.
Scientific Reports, 4(1), art. no. 7243.
https://doi.org/10.1038/srep07243
Tayal, U., King, L., Schofield, R., Castellano, I., Stirrup, J.,
Pontana, F., Earls, J., & Nicol, E. (2019). Image
reconstruction in cardiovascular CT: Part 2-Iterative
reconstruction; potential and pitfalls.
https://doi.org/10.1016/j.jcct.2019.04.009