Bawono, P., Dijkstra, M., Pirovano, W., Feenstra, A., Abeln,
S., and Heringa, J. (2017). Multiple sequence alignment.
In Bioinformatics, pages 167–189. Springer.
Baxevanis, A. D., Bader, G. D., and Wishart, D. S. (2020).
Bioinformatics. John Wiley & Sons.
Chatterjee, S., Hasibuzzaman, M., Iftiea, A., Mukharjee,
T., Nova, S. S., et al. (2019). A hybrid genetic algo-
rithm with chemical reaction optimization for multiple
sequence alignment. In 2019 22nd International Confer-
ence on Computer and Information Technology (ICCIT),
pages 1–6. IEEE.
Chowdhury, B. and Garai, G. (2017). A review on multi-
ple sequence alignment from the perspective of genetic
algorithm. Genomics, 109(5-6):419–431.
Cook, S. (2006). The p versus np problem. The millennium
prize problems, pages 87–104.
Correa, J. M., de Melo, A. C. M. A., Jacobi, R. P., and
Boukerche, A. (2012). Parallel simulated annealing for
fragment based sequence alignment. In 2012 IEEE 26th
International Parallel and Distributed Processing Sym-
posium Workshops & PhD Forum, pages 641–648. IEEE.
Do, C. B., Mahabhashyam, M. S., Brudno, M., and Bat-
zoglou, S. (2005). Probcons: Probabilistic consistency-
based multiple sequence alignment. Genome research,
15(2):330–340.
Edgar, R. C. (2004). Muscle: multiple sequence align-
ment with improved accuracy and speed. In Proceed-
ings. 2004 IEEE Computational Systems Bioinformatics
Conference, 2004. CSB 2004., pages 728–729. IEEE.
Edgar, R. C. and Batzoglou, S. (2006). Multiple se-
quence alignment. Current opinion in structural biology,
16(3):368–373.
Gondro, C. and Kinghorn, B. P. (2007). A simple genetic
algorithm for multiple sequence alignment. Genetics and
Molecular Research, 6(4):964–982.
Katoh, K., Misawa, K., Kuma, K.-i., and Miyata, T. (2002).
Mafft: a novel method for rapid multiple sequence align-
ment based on fast fourier transform. Nucleic acids re-
search, 30(14):3059–3066.
Katoh, K., Rozewicki, J., and Yamada, K. D. (2019). Mafft
online service: multiple sequence alignment, interactive
sequence choice and visualization. Briefings in bioinfor-
matics, 20(4):1160–1166.
Kaya, M., Kaya, B., and Alhajj, R. (2016). A novel multi-
objective genetic algorithm for multiple sequence align-
ment. International Journal of Data Mining and Bioin-
formatics, 14(2):139–158.
Kim, J., Pramanik, S., and Chung, M. J. (1994). Multiple
sequence alignment using simulated annealing. Bioinfor-
matics, 10(4):419–426.
Lassmann, T. (2020). Kalign 3: multiple sequence align-
ment of large datasets.
Lee, Z.-J., Su, S.-F., Chuang, C.-C., and Liu, K.-H. (2008).
Genetic algorithm with ant colony optimization (ga-aco)
for multiple sequence alignment. Applied Soft Comput-
ing, 8(1):55–78.
Mount, D. W. (2001). Bioinformatics. In Bioinformatics,
pages 564–564.
Needleman, S. B. and Wunsch, C. D. (1970). A general
method applicable to the search for similarities in the
amino acid sequence of two proteins. Journal of molec-
ular biology, 48(3):443–453.
Notredame, C. and Higgins, D. G. (1996). Saga: sequence
alignment by genetic algorithm. Nucleic acids research,
24(8):1515–1524.
Notredame, C., Higgins, D. G., and Heringa, J. (2000).
T-coffee: A novel method for fast and accurate multi-
ple sequence alignment. Journal of molecular biology,
302(1):205–217.
Notredame, C., Holm, L., and Higgins, D. G. (1998). Cof-
fee: an objective function for multiple sequence align-
ments. Bioinformatics (Oxford, England), 14(5):407–
422.
Nute, M., Saleh, E., and Warnow, T. (2019). Evaluating
statistical multiple sequence alignment in comparison to
other alignment methods on protein data sets. Systematic
biology, 68(3):396–411.
Riaz, T., Wang, Y., and Li, K.-B. (2004). Multiple sequence
alignment using tabu search. In Proceedings of the sec-
ond conference on Asia-Pacific bioinformatics-Volume
29, pages 223–232.
Rubio-Largo,
´
A., Vega-Rodr
´
ıguez, M. A., and Gonz
´
alez-
´
Alvarez, D. L. (2016). Hybrid multiobjective artificial
bee colony for multiple sequence alignment. Applied Soft
Computing, 41:157–168.
Sievers, F. and Higgins, D. G. (2018). Clustal omega for
making accurate alignments of many protein sequences.
Protein Science, 27(1):135–145.
Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994).
Clustal w: improving the sensitivity of progressive mul-
tiple sequence alignment through sequence weighting,
position-specific gap penalties and weight matrix choice.
Nucleic acids research, 22(22):4673–4680.
Thompson, J. D., Koehl, P., Ripp, R., and Poch, O.
(2005). Balibase 3.0: latest developments of the multi-
ple sequence alignment benchmark. Proteins: Structure,
Function, and Bioinformatics, 61(1):127–136.
Thomsen, R. and Boomsma, W. (2004). Multiple sequence
alignment using saga: investigating the effects of oper-
ator scheduling, population seeding, and crossover op-
erators. In Workshops on applications of evolutionary
computation, pages 113–122. Springer.
Wang, L. and Jiang, T. (1994). On the complexity of multi-
ple sequence alignment. Journal of computational biol-
ogy, 1(4):337–348.
Zafalon, G. F. D., Gomes, V. Z., Amorim, A. R., and
Val
ˆ
encio, C. R. (2021). A hybrid approach using progres-
sive and genetic algorithms for improvements in multi-
ple sequence alignments. In 23rd International Confer-
ence on Enterprise Information Systems (ICEIS 2021),
volume 2, pages 384–391. SciTePress.
ICEIS 2022 - 24th International Conference on Enterprise Information Systems
174