REFERENCES
Akin, E. (2010). The general topology of dynamical sys-
tems. American Mathematical Society, Rhode Island,
USA.
Almazova, N., Barmparis, G. D., and Tsironis, G. P. (2021).
Analysis of chaotic dynamical systems with autoen-
coders. Chaos: An Interdisciplinary Journal of Non-
linear Science, 31.103109:1–10.
Beyn, W.-J. (1991). Numerical methods for dynamical sys-
tems. Advances in numerical analysis, 1:175–236.
Broomhead, D. S. and et al (2020). Singular system analysis
with application to dynamical systems. Chaos, noise
and fractals, pages 15–27.
Bruder, D., Remy, C. D., and Vasudevan, R. (2019). Nonlin-
ear system identification of soft robot dynamics using
koopman operator theory. 2019 International Confer-
ence on Robotics and Automation. IEEE, pages 6244–
6250.
Champion, K. and et al (2019). Data-driven discovery of co-
ordinates and governing equations. Proceedings of the
National Academy of Sciences, 116.45:22445–22451.
Clark, G. (2014). The industrial revolution. Handbook of
economic growth, 2:217–262.
Haddad, W. M. and VijaySekhar, C. (2011). Nonlinear
dynamical systems and control. Princeton university
press, New Jersei, USA.
Harris, C. R. and et al (2020). Array programming with
numpy. Nature, 585:357–362.
Hauser, M. and et al (2019). State-space representations of
deep neural networks. Neural computation, 31:538–
554.
Hunter, D. (2007). Matplotlib: A 2d graphics environment.
Computing in Science & Engineering, 9.3:90–95.
Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996).
Reinforcement learning: A survey. Journal of artifi-
cial intelligence research, 4:237–285.
Koopman, B. O. (1931). Hamiltonian systems and transfor-
mations in hilbert space. Proceedings of the National
Academy of Sciences, 17.5:315–318.
Levi, D. and Winternitz, P. (1996). Symmetries of discrete
dynamical systems. Journal of Mathematical Physics,
37.11:5551–5576.
Li, Q. and et al (2017). Extended dynamic mode decom-
position with dictionary learning: A data-driven adap-
tive spectral decomposition of the koopman operator.
Chaos: An Interdisciplinary Journal of Nonlinear Sci-
ence, 27.103111:1–10.
Materassi, D. and Innocenti, G. (2010). Topological iden-
tification in networks of dynamical systems. IEEE
Transactions on Automatic Control, 55.8:1860–1871.
Mezi
´
c, I. (2013). Analysis of fluid flows via spectral proper-
ties of the koopman operator. Annual Review of Fluid
Mechanics, 45:357–378.
Montgomery, D. C., Runger, G. C., and Hubele, N. F.
(2009). Engineering statistics. John Wiley & Sons,
USA.
Nise, N. S. (2020). Control systems engineering. John Wi-
ley & Sons, New York, USA.
Otto, S. E. and Rowley, C. W. (2019). Linearly recurrent
autoencoder networks for learning dynamics. SIAM
Journal on Applied Dynamical Systems, 18.1:558–
593.
Packard, N. H. and et al (1980). Geometry from a time
series. Physical review letters, 45.9:712–716.
Paszke, A. and et al (2019). Pytorch: An imperative style,
high-performance deep learning library. Advances in
Neural Information Processing Systems, pages 8024–
8035.
Prince, G. E. (1982). Lie symmetries of differential equa-
tions and dynamical systems. Bulletin of the Aus-
tralian Mathematical Society, 25.2:309–311.
Prisecaru, P. (2016). Challenges of the fourth industrial rev-
olution. Knowledge Horizons - Economics, 8.1:57–
62.
Proctor, J., Brunton, S. L., and Kutz, J. N. (2018). Gener-
alizing koopman theory to allow for inputs and con-
trol. SIAM Journal on Applied Dynamical Systems,
17.1:909–930.
Rodic, A. (2009). Automation and Control: Theory and
Practice. InTech, Rijeka, Croatia.
Salle, J. P. L. (1976). The stability of dynamical sys-
tems. Society for Industrial and Applied Mathematics,
Philadelphia, USA.
Sch
¨
olzel, C. (2019). Nonlinear measures for dynamical sys-
tems, volume 1ed. Zenodo.
Schmid, P. J. (2010). Dynamic mode decomposition of nu-
merical and experimental data. Journal of fluid me-
chanics, 656:5–28.
Stuart, A. and Humphries, A. R. (1998). Dynamical systems
and numerical analysis. Cambridge University Press,
Cambridge, UK.
Sutton, R. S. and Barto, A. G. (2018). Reinforcement learn-
ing. Elsevier, Mountain View, USA.
Teng, Q. and Zhang, L. (2019). Data driven nonlinear dy-
namical systems identification using multi-step cldnn.
AIP Advances, 9.085311:1–8.
Todorov, E., Erez, T., and Tassa, Y. (2012). Mujoco:
A physics engine for model-based control. 2012
IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 5026–5033.
v. Neumann, J. (1932a). Zur operatorenmethode in
der klassischen mechanik. Annals of Mathematics,
33.3:587–642.
v. Neumann, J. (1932b). Zusatze zur arbeit ,,zur operatoren-
methode... Annals of Mathematics, 33.4:789–791.
Virtanen, P. and et al (2020). Scipy 1.0: Fundamental al-
gorithms for scientific computing in python. Nature
Methods, 17.3:261–272.
Williams, M. O., Kevrekidis, I. G., and Rowley, C. W.
(2015). A data–driven approximation of the koop-
man operator: Extending dynamic mode decomposi-
tion. Journal of Nonlinear Science, 25.6:1307–1346.
Xu, L. D., Xu, E. L., and Li, L. (2018a). Industry 4.0: state
of the art and future trends. International Journal of
Production Research, 56.8:2941–2962.
Xu, M., David, J. M., and Kim, S. H. (2018b). The fourth
industrial revolution: Opportunities and challenges.
International journal of financial research, 9.2:90–95.
A Performance Benchmark of Formulated Methods for Forecast or Reconstruct Trajectories Associated to the Process Control in Industry
4.0
601