(a) 140 req/s flash crowd. (b) 190 req/s flash crowd. (c) 240 req/s flash crowd.
Figure 6: Cumulative Distribution Values of Flash Crowds using Different Approaches.
REFERENCES
Adewojo, A, A. and Bass, M, J. (2022). A novel weight-
assignment load balancing algorithm for cloud appli-
cations. In 12th International Conference on Cloud
Computing and Services Science, page TBD. IEEE.
Ali-Eldin, A., Seleznjev, O., Sj
¨
ostedt-de Luna, S., Tordsson,
J., and Elmroth, E. (2014). Measuring cloud workload
burstiness. In 2014 IEEE/ACM 7th International Con-
ference on Utility and Cloud Computing, pages 566–
572. IEEE.
Amazon (2021a). Amazon route 53.
Amazon (2021b). Elastic load balancing.
Ari, I., Hong, B., Miller, E. L., Brandt, S. A., and Long,
D. D. (2003). Managing flash crowds on the internet.
In 11th IEEE/ACM International Symposium on Mod-
eling, Analysis and Simulation of Computer Telecom-
munications Systems, 2003. MASCOTS 2003., pages
246–249. IEEE.
Azure, M. (2021a). Azure autoscale — microsoft azure.
Azure, M. (2021b). Load balancer documentation.
Bahga, A., Madisetti, V. K., et al. (2011). Synthetic
workload generation for cloud computing applica-
tions. Journal of Software Engineering and Applica-
tions, 4(07):396.
de Paula Junior, U., Drummond, L. M., de Oliveira, D.,
Frota, Y., and Barbosa, V. C. (2015). Handling flash-
crowd events to improve the performance of web ap-
plications. In Proceedings of the 30th Annual ACM
Symposium on Applied Computing, pages 769–774.
Gandhi, A., Dube, P., Karve, A., Kochut, A., and Zhang, L.
(2014). Adaptive, model-driven autoscaling for cloud
applications. In 11th International Conference on Au-
tonomic Computing ({ICAC} 14), pages 57–64.
Grozev, N. and Buyya, R. (2014). Multi-cloud provisioning
and load distribution for three-tier applications. ACM
Trans. Auton. Adapt. Syst., 9(3):13:1–13:21.
Henderson, T., Michalakes, J., Gokhale, I., and Jha, A.
(2015). Chapter 2 - numerical weather prediction op-
timization. In Reinders, J. and Jeffers, J., editors, High
Performance Parallelism Pearls, pages 7–23. Morgan
Kaufmann, Boston.
Jacob, B., Ng, S. W., and Wang, D. T. (2008). Chapter 3
- management of cache contents. In Jacob, B., Ng,
S. W., and Wang, D. T., editors, Memory Systems,
pages 117–216. Morgan Kaufmann, San Francisco.
Javadi, B., Abawajy, J., and Buyya, R. (2012). Failure-
aware resource provisioning for hybrid cloud infras-
tructure. Journal of parallel and distributed comput-
ing, 72(10):1318–1331.
Le, Q., Zhanikeev, M., and Tanaka, Y. (2007). Methods
of distinguishing flash crowds from spoofed dos at-
tacks. In 2007 Next Generation Internet Networks,
pages 167–173. IEEE.
Niu, Y., Luo, B., Liu, F., Liu, J., and Li, B. (2015).
When hybrid cloud meets flash crowd: Towards cost-
effective service provisioning. In 2015 IEEE Con-
ference on Computer Communications (INFOCOM),
pages 1044–1052. IEEE.
Prathiba, S. and Sowvarnica, S. (2017). Survey of failures
and fault tolerance in cloud. In 2017 2nd International
Conference on Computing and Communications Tech-
nologies (ICCCT), pages 169–172. IEEE.
Priyadarsini, R. J. and Arockiam, L. (2013). Failure man-
agement in cloud: An overview. International Journal
of Advanced Research in Computer and Communica-
tion Engineering, 2(10):2278–1021.
Qu, C., Calheiros, R. N., and Buyya, R. (2016). A reliable
and cost-efficient auto-scaling system for web appli-
cations using heterogeneous spot instances. Journal
of Network and Computer Applications, 65:167–180.
Qu, C., Calheiros, R. N., and Buyya, R. (2017). Mitigating
impact of short-term overload on multi-cloud web ap-
plications through geographical load balancing. con-
currency and computation: practice and experience,
29(12):e4126.
Wang, J., Phan, R. C.-W., Whitley, J. N., and Parish, D. J.
(2011). Ddos attacks traffic and flash crowds traffic
simulation with a hardware test center platform. In
2011 World Congress on Internet Security (WorldCIS-
2011), pages 15–20. IEEE.
CLOSER 2022 - 12th International Conference on Cloud Computing and Services Science
304