technologies. Without current easy-to-use tools, fault
localization can hardly be used in real life projects.
In the future, the platform could also be combined
with other fault localization approaches (Wong et al.,
2016), (Zakari et al., 2020), as well as fault prediction
methods (Caulo,2019), (Catal, 2011).
REFERENCES
Abreu, R., Zoeteweij, P., Golsteijn, R., van Gemund,
A.J.C., 2009. A practical evaluation of spectrum-based
fault localization. The Journal of Systems and Software,
82(11), 1780-1792. doi:10.1016/j.jss.2009.06.035.
Caulo, M., 2019. A taxonomy of metrics for software fault
prediction. 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on
the Foundations of Software Engineering. ESEC/FSE
2019, pp. 1144–1147. doi:10.1145/3338906.3341462.
Catal, C., 2011. Software fault prediction: A literature
review and current trends. Expert Systems with
Applications, vol. 38, no. 4, pp. 4626-4636. doi:
10.1016/j.eswa.2010.10.024.
Cui, Z., Jia, M., Chen, X., Zheng, L., Liu, X., 2020.
Improving software fault localization by combining
spectrum and mutation. IEEE Access vol 8, 172296-
172307. doi:10.1109/ACCESS.2020.3025460.
Debroy V., Wong, W.E., 2010. Using mutation to
automatically suggest fixes for faulty programs. In:
Third International Conference on Software Testing,
Verification and Validation, pp. 65–74.
doi:10.1109/ICST.2010.66.
Defects4j on GitHub. [Online] [Accessed 29 Dec 2021]
Available from https://github.com/rjust/defects4j.
Dutta A., Godboley S., 2021. MSFL: A model for fault
localization using mutation-spectra technique. In:
LASD’2021, Lean and Agile Software Development.
LNBIP, vol 408. pp 156-173, Springer, Cham. doi:
10.1007/978-3-030-67084-9_10.
GZoltar – Java library for automatic debugging. [Online]
[Accessed 25 Jan 2022] Available from
https:/github.com/GZoltar/gzoltar.
Heiden, S., Grunske, L., Kehrer, T., Keller, F., van Hoorn,
A., Filieri, A., Lo, D., 2019. An evaluation of pure
spectrum-based fault localization techniques for large-
scale software systems. Journal of Software: Practice
and Experience. 49(8) pp. 1197-1224.
doi:10.1002/spe.2703.
Jiang, J., Wang, R., Xiong, Y., Chen, X., Zhang, L., 2019.
Combining spectrum-based fault localization and
statistical debugging: an empirical study. In: ASE’19,
34
th
IEEE/ACM International Conference on
Automated Software Engineering. pp. 502-514. IEEE
Comp. Soc. doi.10.1109/ASE.2019.00054.
Just, R., Jalali, D., Ernst, M. D., 2014. Defects4J: a database
of existing faults to enable controlled testing studies for
Java programs. In: ISSTA’2014, International
Symposium on Software Testing and Analysis.
doi:10.1145/2610384.2628055.
Lobo de Oliveira, A.A., Camilo-Junior, C. G., Noronha de
Andrade Freitas, E., Rizzo Vincenzi, A. M., 2018.
FTMES: A failed-test-oriented mutant execution
strategy for mutation-based fault localization. In: IEEE
29th International Symposium on Software Reliability
Engineering, pp. 155-165. doi:
10.1109/ISSRE.2018.00026.
Madeiral, F., Urli, S., de Almeida Maia, M., Monperrus,
M., 2019. BEARS: An extensible Java bug benchmark
for automatic program repair studies. In: SANER’2019,
IEEE 26
th
Conference on Software Analysis, Evolution
and Reengineering. pp. 468-478. doi:
10.1109/SANER.2019.8667991.
Moon, S., Kim, Y., Kim, M., Yoo, Y., 2014. Ask the
mutants: mutating faulty programs for fault
localization. In: Proceedings of IEEE International
Conference on Software Testing, pp. 153–162. doi:
10.1109/ICST.2014.28.
Papadakis, M., Kintis, M., Zhang, Jie, Jia, Y., Le Traon, Y.,
and Harman, M., 2019. Chapter Six - Mutation testing
advances: an analysis and survey. Advances in
Computers. 112, pp. 275-378. Elsevier.
doi:10.1016/bs.adcom.2018.03.015.
Papadakis M, Le Traon Y. 2012. Using mutants to locate
“unknown” faults. In: IEEE Fifth International
Conference on Software Testing, Verification and
Validation, pp. 691–700. doi:10.1109/ICST.2012.159.
Papadakis, M., Le Traon, Y. 2015. Metallaxis-FL:
Mutation-based Fault Localization. Software Testing,
Verification and Reliability 25, pp. 605-628.
doi:10.1002/stvr.1509.
Parnin C, Orso A., 2011. Are automated debugging
techniques actually helping programmers? In:
ISSTA’2011, Proceedings of the 2011 International
Symposium on Software Testing and Analysis, pp.199-
209. doi:10.1145/2001420.2001445.
Pearson, S., Campos, J., Just, R., Fraser, G., Abreu, R.,
Ernst, M.D., Pang, D., Keller, B., 2017. Evaluating and
improving fault localization. In: IEEE/ACM 39th
International Conference on Software Engineering
(ICSE), pp. 609-620. IEEE doi:10.1109/ICSE.2017.62.
Pitest.org.[Online] [Accessed 29 Dec 2021] Available
from: https://pitest.org/.
Saha, R., Lyu, Y., Lam, W., Yoshida, H., Prasad, M., 2018.
Bugs.jar: A large-scale, diverse dataset of real-world
Java bugs. In: IEEE/ACM 15
th
International
Conference on Mining Software Repositories (MSR),
pp. 10-13. doi:10.1145/3196398.3196473.
Storer, J.A., Szymanski, T.G., 1982. Data compression via
textual substitution. Journal of the ACM. 29(4) pp. 928-
951. doi:10.1145/322344.322346
Wong, E., Gao, R., Li, Y., Abreu, R., Wotawa, F., 2016. A
survey on software fault localization. IEEE
Transactions on Software Engineering 42(8), pp. 707-
740. doi:0.1109/TSE.2016.2521368.
Zakari, A., Lee, S.P., Abreu, R., Ahmed, B.H., Rasheed,
R.A., 2020. Multiple fault localization of software
programs: a systematic literature review. Information
and Software Technology, 124, 106312.
doi:10.1016/j.infsof.2020.106312.