Diamantas, S. C., Oikonomidis, A., and Crowder, R. M.
(2010). Depth computation using optical flow and
least squares. In 2010 IEEE/SICE International Sym-
posium on System Integration, pages 7–12, Sendai,
Japan.
Hassaballah, M. and Hosny, K. (2019). Recent Ad-
vances in Computer Vision: Theories and Applica-
tions. Springer, Cham.
J
´
egou, S., Drozdzal, M., Vazquez, D., Romero, A., and
Bengio, Y. (2017). The one hundred layers tiramisu:
Fully convolutional densenets for semantic segmenta-
tion. arXiv:1611.09326.
Kalal, Z., Mikolajczyk, K., and Matas, J. (2010). Forward-
backward error: Automatic detection of tracking fail-
ures. In In Proceedings of the 2010 20th International
Conference on Pattern Recognition, ICPR ’10, pages
2756–2759. IEEE Computer Society.
Konstantinova, P., Udvarev, A., and Semerdjiev, T. (2003).
A study of a target tracking algorithm using global
nearest neighbor approach. International Conference
on Computer Systems and Technologies - CompSys-
Tech’2003.
Li, C., Chen, Q., Gu, G., and Qian, W. (2013). Laser time-
of-flight measurement based on time-delay estimation
and fitting correction. Optical Engineering, 52(7).
Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick,
R., Hays, J., Perona, P., Ramanan, D., Zitnick, C. L.,
and Doll
´
ar, P. (2015). Microsoft coco: Common ob-
jects in context. arXiv:1405.0312.
Lucas, B. D. and Kanade, T. (1981). An iterative image
registration technique with an application to stereo vi-
sion. In Proceedings of the 7th International Joint
Conference on Artificial Intelligence (IJCAI), August
24-28, pages 674–679.
Markevicius, V., Navikas, D., Idzkowski, A., Valinevicius,
A., Zilys, M., and Andriukaitis, D. (2017). Vehi-
cle speed and length estimation using data from two
anisotropic magneto-resistive (amr) sensors. Sensors,
17(8):1–13.
Markevicius, V., Navikas, D., Miklusis, D., Andriukaitis,
D., Valinevicius, A., Zilys, M., and Cepenas, M.
(2020). Analysis of methods for long vehicles speed
estimation using anisotropic magneto-resistive (amr)
sensors and reference piezoelectric sensor. Sensors,
20(12):1–15.
Miller, M. L., Stone, H. S., , Cox, I. J., and Cox, I. J. (1997).
Optimizing murty’s ranked assignment method. IEEE
Transactions on Aerospace and Electronic Systems,
33:851–862.
Murty, K. G. (1968). An algorithm for ranking all the as-
signments in order of increasing cost. Operations Re-
search, 16(3):682–687.
Rajab, S. A., Mayeli, A., and Refai, H. H. (2014). Vehi-
cle classification and accurate speed calculation using
multi-element piezoelectric sensor. In 2014 IEEE In-
telligent Vehicles Symposium (IV), pages 894–899.
Redmon, J. (2021). Darknet: Open source neural networks
in c. http://pjreddie.com/darknet/.
Redmon, J. and Farhadi, A. (2018). Yolov3: An incremental
improvement. arXiv:1804.02767.
Sarbolandi, H., Plack, M., and Kolb, A. (2018). Pulse based
time-of-flight range sensing. Sensors, 18(6):1–22.
Shi, J. and Tomasi (1994). Good features to track. In 1994
Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition, pages 593–600.
Simon, D. (2006). Optimal state estimation: Kalman, h
infinity, and nonlinear approaches. In Optimal State
Estimation: Kalman, H Infinity, and Nonlinear Ap-
proaches. Wiley-Interscience.
Tomasi, C. and Kanade, T. (1991). Shape and motion from
image streams: a factorization method – part 3 detec-
tion and tracking of point features. Technical Report
CMU-CS-91-132, Carnegie Mellon University, Pitts-
burgh, PA.
Torr, P. and Zisserman, A. (2000). Mlesac: A new ro-
bust estimator with application to estimating image
geometry. Computer Vision and Image Understand-
ing, 78(1):138–156.
Welch, G. and Bishop, G. (2006). An introduction to the
kalman filter. Technical Report TR 95-041, Depart-
ment of Computer Science, University of North Car-
olina at Chapel Hill, Chapel Hill, NC, USA.
YOLOv4 (2021). https://github.com/cuixing158/yolov3-
yolov4-matlab.
IMPROVE 2022 - 2nd International Conference on Image Processing and Vision Engineering
218