et al., E. M. C. Sifting robotic from organic text: A natural
language approach for detecting automation on twit-
ter.
Ferrara, E., Varol, O., Davis, C., Menczer, F., and
Flammini, (2016). The rise of social bots. Commun.
ACM, 59(7):96–104.
Freitas, C., Benevenuto, F., and Veloso, A. (2014). Social-
bots: Implicações na segurança e na credibilidade de
serviços baseados no twitter. SBRC, Santa Catarina,
Brasil, pages 603–616.
Gilani, Z., Kochmar, E., and Crowcroft, J. (2017). Clas-
sification of twitter accounts into automated agents
and human users. In 2017 IEEE/ACM International
Conference on Advances in Social Networks Analysis
and Mining (ASONAM), pages 489–496.
Grimme, C., Preuss, M., Adam, L., and Trautmann, H.
(2017). Social bots: Human-like by means of human
control? CoRR, abs/1706.07624.
Kudugunta, S. and Ferrara, E. (2018). Deep neural
networks for bot detection. CoRR, abs/1802.04289.
Lee, K., Eoff, B. D., and Caverlee, J. (2011). Seven
months with the devils: a long-term study of content
polluters on twitter. In In AAAI Int’l Conference on
Weblogs and Social Media (ICWSM.
Messias, J., Schmidt, L., Oliveira, R. A. R., and Souza, F.
D. (2013). You followed my bot! transforming robots
into influential users in twitter.
Ramalingam, D. and Chinnaiah, V. (2018). Fake profile
detection techniques in large-scale online social net-
works: A comprehensive review. Comput. Electr.
Eng., 65:165–177.
Sarkar, D. (2016). Text Analytics with Python: A Practical
Real-World Approach to Gaining Actionable Insights
from Your Data. Apress, Berkely, CA, USA, 1st edi-
tion.
scikit learn.org (2020). A random forest regressor descrip-
tion.
Statista and partners (2018). Bot traffic share. 06 maio de
2018.
Subrahmanian, V., Azaria, A., Durst, S., Kagan, V.,
Galstyan, A., Lerman, K., Zhu, L., Ferrara, E.,
Flammini, A., and Menczer, F. (2016). The darpa
twitter bot chal- lenge. Computer, 49(6):38–46.
Subrahmanian, V. S. and et al. The DARPA twitter bot
challenge.
Tang, D., Wei, F., Qin, B., Yang, N., Liu, T., and Zhou,
M. (2015). Sentiment embeddings with applications to
sentiment analysis. IEEE transactions on knowledge
and data Engineering, 28(2):496–509.
Tang, D., Wei, F., Yang, N., Zhou, M., Liu, T., and Qin,
B. (2014a). Learning sentiment-specific word
embedding for twitter sentiment classification. In
Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 1555–1565.
Tang, D., Wei, F., Yang, N., Zhou, M., Liu, T., and Qin,
B. (2014b). Learning sentiment-specific word
embedding for twitter sentiment classification. In
Learning Sentiment-Specific Word Embedding for
Twitter Sentiment Classification, pages 1555–1565,
Baltimore, Maryland. Association for Computational
Linguistics.
Varol, O., , and al. (2017a). Datasets.
Varol, O., Ferrara, E., Davis, C., Menczer, F., and Flam-
mini, A. (2017b). Online human-bot interactions: De-
tection, estimation, and characterization.
Velázquez, E., Yazdani, M., and Suárez-Serrato, P.
Social- bots supporting human rights.
Velázquez, E., Yazdani, M., and Suárez-Serrato, P.
(2017). Socialbots supporting human rights. arXiv
preprint arXiv:1710.11346.
Wagner, C., Mitter, S., Ko¨rner, C., and Strohmaier, M.
(2012). When social bots attack: Modeling suscep-
tibility of users in online social networks. In # MSM,
pages 41–48.
Wagner, C., Mitter, S., Strohmaier, M., and Ko¨rner, C.
When social bots attack: Modeling susceptibility of
users in online social networks.
Warriner, A., Kuperman, V., and Brysbaert, M. (2013).
Norms of valence, arousal, and dominance for 13,915
english lemmas. Behavior Research Methods.
Zhang, J., Zhang, R., Zhang, Y., and Yan, G. (2016). The
rise of social botnets: Attacks and countermeasures.
PP.