Chaurasia, V., & Pal, S. (2014a). Data mining techniques:
to predict and resolve breast cancer survivability.
International Journal of Computer Science and Mobile
Computing IJCSMC, 3(1), 10-22.
Chaurasia, V. and Pal, S. (2014b). Performance analysis of
data mining algorithms for diagnosis and prediction of
heart and breast cancer disease. Review of research,
3(8).
Chaves,
R.,
Ram´ırez,
J.,
Go´rriz,
J.,
Lo´pez,
M.,
Salas-Gonzalez, D., Alvarez, I., and Segovia, F. (2009).
Svm-based computer-aided diagnosis of the
Alzheimer’s disease using t-test nmse feature selection
with feature correlation weighting. Neuroscience
let- ters, 461(3):293–297.
Clinton, S. K., Giovannucci, E. L., and Hursting, S. D.
(2020). The world cancer research fund/american
institute for cancer research third expert report on diet,
nutrition, physical activity, and cancer: impact and
future directions. The Journal of nutrition, 150(4):663–
671.
Delen, D., Walker, G., and Kadam, A. (2005). Predicting
breast cancer survivability: a comparison of three data
mining methods. Artificial intelligence in medicine,
34(2):113–127.
Demuth, H. and Beale, M. (2000). Neural network toolbox
user’s guide.
Ehrenstein, V., Nielsen, H., Pedersen, A. B., Johnsen, S. P.,
and Pedersen, L. (2017). Clinical epidemiology in the
era of big data: new opportunities, familiar challenges.
Clinical epidemiology, 9:245.
Erkal, B., & Ayyıldız, T. E. (2021, November). Using
Machine Learning Methods in Early Diagnosis of
Breast Cancer. In 2021 Medical Technologies Congress
(TIPTEKNO) (pp. 1-3). IEEE.
Gholamrezaei, M. and Ghorbanian, K. (2007). Rotated
general regression neural network. In 2007
International Joint Conference on Neural Networks,
pages 1959– 1964. IEEE.
Hu, L.-Y., Huang, M.-W., Ke, S.-W., and Tsai, C.F. (2016).
The distance function effect on k-nearest neighbor
classification for medical datasets. Springer Plus,
5(1):1–9.
Huang, S., Cai, N., Pacheco, P. P., Narrandes, S., Wang, Y.,
and Xu, W. (2018). Applications of support vector
machine (svm) learning in cancer genomics. Cancer
genomics & proteomics, 15(1):41–51.
Landis, J. R. and Koch, G. G. (1977). The measurement of
observer agreement for categorical data. Biometrics,
pages 159–174.
Liu, Y.-Q., Wang, C., and Zhang, L. (2009). Decision tree
based predictive models for breast cancer survivability
on imbalanced data. In 2009 3rd international
conference on bioinformatics and biomedical
engineering, pages 1–4. IEEE.
Mu, T. and Nandi, A. K. (2007). Breast cancer detection
from fna using svm with different parameter tuning
systems and som–rbf classifier. Journal of the Franklin
Institute, 344(3-4):285–311.
Osareh, A. and Shadgar, B. (2010). Machine learning
techniques to diagnose breast cancer. In 2010 5th
international symposium on health informatics and
bioinformatics, pages 114–120. IEEE.
Sizilio, G. R., Leite, C. R., Guerreiro, A. M., and Neto, A.
D. D. (2012). Fuzzy method for pre-diagnosis of breast
cancer from the fine needle aspirate analysis.
Biomedical engineering online, 11(1):1–21.
Vert, J. P., Tsuda, K., & Schölkopf, B. (2004). A primer on
kernel methods. Kernel methods in computational
biology, 47, 35-70.
WHO (2021, Mar. 26). Breast cancer [Online]. Available:
https://www.who.int/news-room/fact-
sheets/detail/breast-cancer
Wolberg, W. H. and Mangasarian, O. L. (1990). Multi-
surface method of pattern separation for medical
diagnosis applied to breast cytology. Proceedings of the
national academy of sciences, 87(23):9193–9196.