Hofmann, M., Kjølle, G. H., and Gjerde, O. (2015). Vul-
nerability analysis related to extraordinary events in
power systems. In Proc. 2015 IEEE Eindhoven Pow-
erTech, pages 1–6. IEEE.
Howard, M. and Lipner, S. (2006). The Security Develop-
ment Lifecycle. Microsoft Press, Redmond, WA.
IEC (1995). Dependability management–part 3: Applica-
tion guide–section 9: Risk analysis of technological
systems.
IEC 61025:2006 (2006). IEC 61025:2006 Fault tree analy-
sis (FTA). International Standard, International Elec-
trotechnical Commission.
ISO/IEC 27005:2018 (2018). ISO/IEC 27005:2018 - Infor-
mation technology - Security techniques - Information
security risk management. Standard, International Or-
ganization for Standardization.
Jakobsen, S. H., Garau, M., and Mo, O. (2021). An open-
source tool for reliability analysis in radial distribu-
tion grids. In Proc. 2021 International Conference on
Smart Energy Systems and Technologies (SEST’21),
pages 1–6. IEEE.
Kjølle, G. H., Utne, I. B., and Gjerde, O. (2012). Risk anal-
ysis of critical infrastructures emphasizing electricity
supply and interdependencies. Reliability Engineer-
ing & System Safety, 105:80–89.
Kröger, W., Zio, E., and Schläpfer, M. (2011). Vulnerable
systems. Springer, London.
Lei, H., Singh, C., and Sprintson, A. (2015). Reliability
analysis of modern substations considering cyber link
failures. In Proc. 2015 IEEE Innovative Smart Grid
Technologies - Asia (ISGT’15), pages 1–5. IEEE.
Lewis, S. and Smith, K. (2010). Lessons learned from real
world application of the bow-tie method. In Proc.
6th Global Congress on Process Safety, pages 22–24.
OnePetro.
Li, W. (2014). Risk Assessment of Power Systems: Models,
Methods, and Applications. John Wiley & Sons.
Liu, Y., Deng, L., Gao, N., and Sun, X. (2019). A Reli-
ability Assessment Method of Cyber Physical Distri-
bution System. Energy Procedia, 158:2915–2921.
Lund, M., Solhaug, B., and Stølen, K. (2011). Model-
Driven Risk Analysis: The CORAS Approach.
Springer.
McGraw, G. (2006). Software Security: Building Security
In. Addison-Wesley.
Nielsen, D. S. (1971). The cause/consequence diagram
method as a basis for quantitative accident analysis.
Risø National Laboratory.
NIST 800-30 (2012). Special Publication 800-30 Guide for
Conducting Risk Assessments. Standard, National In-
stitute of Standards and Technology.
NIST 800-39:2011 (2011). NIST Special Publication 800-
39 - managing information security risk organization,
mission, and information system view. Standard,
NIST. Accessed: 2021-10-25.
Omerovic, A., Vefsnmo, H., Erdogan, G., Gjerde, O.,
Gramme, E., and Simonsen, S. (2019). A feasibil-
ity study of a method for identification and modelling
of cybersecurity risks in the context of smart power
grid. In Proc. 4th International Conference on Com-
plexity, Future Information Systems and Risk (COM-
PLEXIS’19), pages 39–51. SciTePress.
Omerovic, A., Vefsnmo, H., Gjerde, O., Ravndal, S., and
Kvinnesland, A. (2020). An industrial trial of an ap-
proach to identification and modelling of cybersecu-
rity risks in the context of digital secondary substa-
tions. In Proc. 14th International Conference on Risks
and Security of Internet and Systems (CRISiS’19),
pages 17–33. Springer.
Rinaldi, S. M., Peerenboom, J. P., and Kelly, T. K. (2001).
Identifying, understanding, and analyzing critical in-
frastructure interdependencies. IEEE Control Systems
Magazine, 21(6):11–25.
Sanders, W. H. and Meyer, J. F. (2000). Stochastic activity
networks: Formal definitions and concepts. In School
organized by the European Educational Forum, pages
315–343. Springer.
Schneier, B. (1999). Modeling security threats. Dr. Dobb’s
journal, 24(12).
Shostack, A. (2014). Threat modeling: Designing for secu-
rity. John Wiley & Sons.
Solhaug, B. and Stølen, K. (2013). The coras language-
why it is designed the way it is. In Proc. 11th Interna-
tional Conference on Structural Safety and Reliability
(ICOSSAR’13), pages 3155–3162. Citeseer.
Swiderski, F. and Snyder, W. (2004). Threat Modeling. Mi-
crosoft Press, Redmond, WA.
Ten, C.-W., Liu, C.-C., and Manimaran, G. (2008). Vul-
nerability Assessment of Cybersecurity for SCADA
Systems. IEEE Transactions on Power Systems,
23(4):1836–1846.
Tøndel, I. A., Foros, J., Kilskar, S. S., Hokstad, P., and
Jaatun, M. G. (2018). Interdependencies and relia-
bility in the combined ICT and power system: An
overview of current research. Applied computing and
informatics, 14(1):17–27.
Tøndel, I. A., Vefsnmo, H., Gjerde, O., Johannessen, F.,
and Frøystad, C. (2021). Hunting dependencies: Us-
ing bow-tie for combined analysis of power and cyber
security. In Proc. 2020 2nd International Conference
on Societal Automation (SA’20), pages 1–8.
Zerihun, T. A., Garau, M., and Helvik, B. E. (2020). Ef-
fect of Communication Failures on State Estimation
of 5G-Enabled Smart Grid. IEEE Access, 8:112642–
112658.
Zhang, Y., Wang, L., Xiang, Y., and Ten, C.-W. (2015).
Power System Reliability Evaluation With SCADA
Cybersecurity Considerations. IEEE Transactions on
Smart Grid, 6(4):1707–1721.
Zhang, Y., Wang, L., Xiang, Y., and Ten, C.-W. (2016). In-
clusion of SCADA Cyber Vulnerability in Power Sys-
tem Reliability Assessment Considering Optimal Re-
sources Allocation. IEEE Transactions on Power Sys-
tems, 31(6):4379–4394.
Zhu, W., Panteli, M., and Milanovi
´
c, J. V. (2018). Relia-
bility and Vulnerability Assessment of Interconnected
ICT and Power Networks Using Complex Network
Theory. In Proc. 2018 IEEE Power Energy Society
General Meeting (PESGM’18), pages 1–5. IEEE.
ICSOFT 2022 - 17th International Conference on Software Technologies
32