Azavea Inc. (2021). Geotrellis. https://geotrellis.io/. ac-
cessed 09-Aug-2021.
Beisken, S., Meinl, T., Wiswedel, B., de Figueiredo, L. F.,
Berthold, M., and Steinbeck, C. (2013). Knime-cdk:
Workflow-driven cheminformatics. BMC bioinfor-
matics, 14(1):1–4.
Berriman, G. B., Deelman, E., Good, J. C., Jacob, J. C.,
Katz, D. S., Kesselman, C., Laity, A. C., Prince, T. A.,
Singh, G., and Su, M.-H. (2004). Montage: a grid-
enabled engine for delivering custom science-grade
mosaics on demand. In Optimizing scientific return
for astronomy through information technologies, vol-
ume 5493, pages 221–232. SPIE.
Cesium GS, Inc. (2022). Cesium: The platform for 3d
geospatial. https://cesium.com. accessed 03-Feb-
2022.
CesiumGS (2020). Geotiffquantized-mesh. https://github.
com/CesiumGS/quantized-mesh. accessed 28-Sep-
2021.
Crawl, D., Block, J., Lin, K., and Altintas, I. (2017).
Firemap: A dynamic data-driven predictive wildfire
modeling and visualization environment. Procedia
Computer Science, 108:2230–2239.
Cui, D., Wu, Y., and Zhang, Q. (2010). Massive spatial data
processing model based on cloud computing model.
3rd International Joint Conference on Computational
Sciences and Optimization, CSO 2010: Theoretical
Development and Engineering Practice, 2:347–350.
De Berg, M., Cheong, O., Van Kreveld, M., and Overmars,
M. (2008). Computational geometry: Algorithms and
applications. Computational geometry: algorithms
and applications, pages 1–17.
Dean, J. and Ghemawat, S. (2008). Mapreduce: Simpli-
fied data processing on large clusters. Commun. ACM,
51(1):107–113.
Delaunay, B. et al. (1934). Sur la sphere vide. Izv. Akad.
Nauk SSSR, Otdelenie Matematicheskii i Estestven-
nyka Nauk, 7(793-800):1–2.
Du, Y. and Cheng, P. (2017). Lwgeowfms: A lightweight
geo-workflow management system. In IOP Confer-
ence Series: Earth and Environmental Science, vol-
ume 59, page 012070. IOP Publishing.
Giachetta, R. (2015). A framework for processing large
scale geospatial and remote sensing data in MapRe-
duce environment. Computers and Graphics (Perga-
mon), 49:37–46.
Hegeman, J. W., Sardeshmukh, V. B., Sugumaran, R., and
Armstrong, M. P. (2014). Distributed LiDAR data pro-
cessing in a high-memory cloud-computing environ-
ment. Annals of GIS, 20(4):255–264.
Hessisches Landesamt f
¨
ur Bodenmanagement und Geoin-
formation (2021). Hessian geodata portal: Geodaten
online. https://www.gds.hessen.de. accessed 08-Dec-
2021.
Hughes, J. N., Annex, A., Eichelberger, C. N., Fox, A.,
Hulbert, A., and Ronquest, M. (2015). GeoMesa:
a distributed architecture for spatio-temporal fusion.
In Pellechia, M. F., Palaniappan, K., Doucette, P. J.,
Dockstader, S. L., Seetharaman, G., and Deignan,
P. B., editors, Geospatial Informatics, Fusion, and
Motion Video Analytics V, volume 9473, pages 128
– 140. International Society for Optics and Photonics,
SPIE.
Kr
¨
amer, M. (2021). Efficient scheduling of scientific work-
flow actions in the cloud based on required capabil-
ities. In Hammoudi, S., Quix, C., and Bernardino,
J., editors, Data Management Technologies and Ap-
plications, pages 32–55, Cham. Springer International
Publishing.
Kr
¨
amer, M., Gutbell, R., W
¨
urz, H. M., and Weil, J. (2020).
Scalable processing of massive geodata in the cloud:
generating a level-of-detail structure optimized for
web visualization. AGILE: GIScience Series, pages
1–20.
Kr
¨
amer, M., W
¨
urz, H. M., and Altenhofen, C. (2021). Ex-
ecuting cyclic scientific workflows in the cloud. Jour-
nal of Cloud Computing, 10(1):1–26.
Larsonneur, E., Mercier, J., Wiart, N., Floch, E., Del-
homme, O., and Meyer, V. (2018). Evaluating work-
flow management systems: A bioinformatics use case.
pages 2773–2775.
Maptools.org (2020). Geotiff. http://geotiff.maptools.org/
spec/contents.html. accessed 28-Sep-2021.
Medeiros, C. B., Vossen, G., and Weske, M. (1996). Geo-
wasa-combining gis technology with workflow man-
agement. In Proceedings of the Seventh Israeli Con-
ference on Computer Systems and Software Engineer-
ing, pages 129–139. IEEE.
Oinn, T., Greenwood, M., Addis, M., Alpdemir, M. N.,
Ferris, J., Glover, K., Goble, C., Goderis, A., Hull,
D., Marvin, D., Li, P., Lord, P., Pocock, M. R., Sen-
ger, M., Stevens, R., Wipat, A., and Wroe, C. (2006).
Taverna: lessons in creating a workflow environment
for the life sciences. Concurrency and Computation:
Practice and Experience, 18(10):1067–1100.
Open Source Geospatial Foundation (2012). Tile map ser-
vice specification. https://wiki.osgeo.org/wiki/Tile
Map Service Specification. accessed 08-Dec-2021.
Red Hat Inc. (2019). Gluster. https://gluster.org. accessed
28-Sep-2021.
Sefraoui, O., Aissaoui, M., and Eleuldj, M. (2012). Open-
stack: toward an open-source solution for cloud com-
puting. International Journal of Computer Applica-
tions, 55(3):38–42.
Wang, Y., Liu, Z., Liao, H., and Li, C. (2015). Improving
the performance of GIS polygon overlay computation
with MapReduce for spatial big data processing. Clus-
ter Computing, 18(2):507–516.
Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S.,
Stoica, I., et al. (2010). Spark: Cluster computing with
working sets. HotCloud, 10(10-10):95.
Zhong, Y., Han, J., Zhang, T., and Fang, J. (2012). A
distributed geospatial data storage and processing
framework for large-scale WebGIS. Proceedings -
2012 20th International Conference on Geoinformat-
ics, Geoinformatics 2012, (20).
Preprocessing of Terrain Data in the Cloud using a Workflow Management System
49