Bengio, Y., P. Simard, and P. Frasconi, Learning long-term
dependencies with gradient descent is difficult. Ieee
Transactions on Neural Networks, 1994. 5(2): p. 157-
166.
Bernardes, J.S. and C.E. Pedreira, A review of protein
function prediction under machine learning
perspective. Recent patents on biotechnology, 2013.
7(2): p. 122-41.
Bonetta, R. and G. Valentino, Machine learning techniques
for protein function prediction. Proteins-Structure
Function and Bioinformatics, 2020. 88(3): p. 397-413.
Cai, L.M., et al. Evolutionary computation techniques for
multiple sequence alignment. in 2000 Congress on
Evolutionary Computation (CEC2000). 2000. La Jolla,
Ca.
Chou, K.C. and C.T. Zhang, Prediction of protein structural
classes. Critical Reviews in Biochemistry and
Molecular Biology, 1995. 30(4): p. 275-349.
Chou, K.-C., An insightful 20-year recollection since the
birth of pseudo amino acid components. Amino Acids,
2020. 52(5): p. 847-847.
Chou, K.C., Prediction of protein cellular attributes using
pseudo-amino acid composition. Proteins-Structure
Function and Genetics, 2001. 43(3): p. 246-255.
Chou, K.-C., RETRACTION: WITHDRAWN: An
insightful recollection for predicting protein
subcellular locations in multi-label systems. Genomics,
2019.
Comet, J.P. and J. Henry, Pairwise sequence alignment
using a PROSITE pattern-derived similarity score.
Computers & Chemistry, 2002. 26(5): p. 421-436.
Dayhoff, M.O., W.C. Barker, and L.T. Hunt, Establishing
homologies in protein sequences. Methods in
Enzymology, 1983. 91: p. 524-545.
Deng, H.Y., Y. Jia, and Y. Zhang, Protein structure
prediction. International Journal of Modern Physics B,
2018. 32(18).
Ding, S.F., et al., Evolutionary artificial neural networks: a
review. Artificial Intelligence Review, 2013. 39(3): p.
251-260.
Dubchak, I., et al., Prediction of protein-folding class using
global description of amino-acid sequence.
Proceedings of the National Academy of Sciences of
the United States of America, 1995. 92(1
Dubchak, I., et al., Recognition of a protein fold in the
context of the SCOP classification. Proteins-Structure
Function and Bioinformatics, 1999. 35(4): p. 401-407.
Eddy, S.R., A memory-efficient dynamic programming
algorithm for optimal alignment of a sequence to an
RNA secondary structure. Bmc Bioinformatics, 2002.
3.
Edgar, R.C., MUSCLE: multiple sequence alignment with
high accuracy and high throughput. Nucleic Acids
Research, 2004. 32(5): p. 1792-1797.
Elmlund, D. and H. Elmlund, Cryogenic Electron
Microscopy and Single-Particle Analysis, in Annual
Review of Biochemistry, Vol 84, R.D. Kornberg,
Editor. 2015. p. 499-517.
Gondro, C. and B.P. Kinghorn, A simple genetic algorithm
for multiple sequence alignment. Genetics and
Molecular Research, 2007. 6(4): p. 964-982.
Gonzalez-Lopez, F., et al. End-to-end prediction of protein-
protein interaction based on embedding and recurrent
neural networks. in IEEE International Conference on
Bioinformatics and Biomedicine
Hall, L.D., Nuclear magnetic resonance. Advances in
Carbohydrate Chemistry, 1964. 19: p. 51-93.
Hanson, J., et al., Improving prediction of protein
secondary structure, backbone angles, solvent
accessibility and contact numbers by using predicted
contact maps and an ensemble of recurrent and and
residual convolutional neural networks.
Bioinformatics, 2019. 35(14): p. 2403-2410.
Henikoff, S. and J.G. Henikoff, Amino-acid substitution
matrices from protein blocks. Proceedings of the
National Academy of Sciences of the United States of
America, 1992. 89(22): p. 10915-10919.
Hornak, V., et al., Comparison of multiple amber force
fields and development of improved protein backbone
parameters. Proteins-Structure Function and
Bioinformatics, 2006. 65(3): p. 712-725.
Ilonen, J., J.K. Kamarainen, and J. Lampinen, Differential
evolution training algorithm for feed-forward neural
networks. Neural Processing Letters, 2003. 17(1): p.
93-105.
Jararweh, Y., et al., Improving the performance of the
needleman-wunsch algorithm using parallelization and
vectorization techniques. Multimedia Tools and
Applications, 2019. 78(4): p. 3961-3977.
Jumper, J., et al., Highly accurate protein structure
prediction with AlphaFold. Nature: p. 12.
Kabsch, W. and C. Sander, Dictionary of Protein
Secondary Structure - pattern-recognition of hydrogen-
bonded and geometrical features. Biopolymers, 1983.
22(12): p. 2577-2637.
Kawashima, S. and M. Kanehisa, AAindex: Amino acid
index database. Nucleic Acids Research, 2000. 28(1):
p. 374-374.
Kinch, L.N., et al., Evaluation of free modeling targets in
CASP11 and ROLL. Proteins-Structure Function and
Bioinformatics, 2016. 84: p. 51-66.
Kurgan, L. and K. Chen, Prediction of protein structural
class for the twilight zone sequences. Biochemical and
Biophysical Research Communications, 2007. 357(2):
p. 453-460.
Landan, G. and D. Graur, Characterization of pairwise and
multiple sequence alignment errors. Gene, 2009.
441(1-2): p. 141-147.
Lecun, Y., et al., Gradient-based learning applied to
document recognition. Proceedings of the Ieee, 1998.
86(11): p. 2278-2324.
Lewicki, G. and G. Marino, Approximation by
superpositions of a sigmoidal function. Zeitschrift Fur
Analysis Und Ihre Anwendungen, 2003. 22(2): p. 463-
470.
Lin, C., et al., Hierarchical Classification of Protein Folds
Using a Novel Ensemble Classifier. Plos One, 2013.
8(2).