Cheng, F., Liu, C., Jiang, J., et al. (2012). Prediction of
drug-target interactions and drug repositioning via
network-based inference. PLoS Computational
Biology, 8 (5), e1002503.
Engin, H. B., Gursoy, A., Nussinov, R., et al. (2014).
Network-based strategies can help mono- and poly-
pharmacology drug discovery: a systems biology
view. Current Pharmaceutical Design, 20 (8), 1201-
1207.
Eslami Manoochehri, H., & Nourani, M. (2020). Drug-
target interaction prediction using semi-bipartite graph
model and deep learning. BMC Bioinformatics, 21
(Suppl 4), 248.
Ezzat, A., Wu, M., Li, X. L., et al. (2019). Computational
prediction of drug-target interactions using
chemogenomic approaches: an empirical survey. Brief
Bioinform, 20 (4), 1337-1357.
Ezzat, A., Zhao, P., Wu, M., et al. (2017). Drug-Target
Interaction Prediction with Graph Regularized Matrix
Factorization. IEEE/ACM Transactions on
Computational Biology Bioinformatics, 14 (3), 646-
656.
Ganegoda, G. U., Li, M., Wang, W., et al. (2015).
Heterogeneous network model to infer human disease-
long intergenic non-coding RNA associations. IEEE
Transactions on Nanobioscience, 14 (2), 175-183.
Gonen, M. (2012). Predicting drug-target interactions
from chemical and genomic kernels using Bayesian
matrix factorization. Bioinformatics, 28 (18), 2304-
2310.
Gottlieb, A., Stein, G. Y., Ruppin, E., et al. (2011).
PREDICT: a method for inferring novel drug
indications with application to personalized medicine.
Molecular Systems Biology, 7, 496.
Hao, M., Bryant, S. H., & Wang, Y. (2017). Predicting
drug-target interactions by dual-network integrated
logistic matrix factorization. Scientific Reports, 7,
40376.
Hodos, R. A., Kidd, B. A., Shameer, K., et al. (2016). In
silico methods for drug repurposing and
pharmacology. Wiley Interdisciplinary Reviews-
Systems Biology and Medicine, 8 (3), 186-210.
Hunter, S., Apweiler, R., Attwood, T. K., et al. (2009).
InterPro: the integrative protein signature database.
Nucleic Acids Research, 37 (Database issue), D211-
215.
Jacob, L., & Vert, J. P. (2008). Protein-ligand interaction
prediction: an improved chemogenomics approach.
Bioinformatics, 24 (19), 2149-2156.
Kim, S., Chen, J., Cheng, T., et al. (2021). PubChem in
2021: new data content and improved web interfaces.
Nucleic Acids Research, 49 (D1), D1388-D1395.
Kohler, S., Bauer, S., Horn, D., et al. (2008). Walking the
interactome for prioritization of candidate disease
genes. American Journal of Human Genetics, 82 (4),
949-958.
Kuang, Q., Wang, M., Li, R., et al. (2014). A systematic
investigation of computation models for predicting
Adverse Drug Reactions (ADRs). PLoS One, 9 (9),
e105889.
Kuang, Q. F., Li, Y. Z., Wu, Y. M., et al. (2017). A kernel
matrix dimension reduction method for predicting
drug-target interaction. Chemometrics and Intelligent
Laboratory Systems, 162, 104-110.
Li, Y., & Patra, J. C. (2010). Genome-wide inferring gene-
phenotype relationship by walking on the
heterogeneous network. Bioinformatics, 26 (9), 1219-
1224.
Liu, Y., Wu, M., Miao, C., et al. (2016). Neighborhood
Regularized Logistic Matrix Factorization for Drug-
Target Interaction Prediction. PLoS Computational
Biology, 12 (2), e1004760.
Lotfi Shahreza, M., Ghadiri, N., & Green, J. R. (2019).
Heter-LP: A Heterogeneous Label Propagation
Method for Drug Repositioning. Methods in
Molecular Biology, 1903, 291-316.
Lotfi Shahreza, M., Ghadiri, N., Mousavi, S. R., et al.
(2017). Heter-LP: A heterogeneous label propagation
algorithm and its application in drug repositioning.
Journal of Biomedical Informatics, 68, 167-183.
Lotfi Shahreza, M., Ghadiri, N., Mousavi, S. R., et al.
(2018). A review of network-based approaches to drug
repositioning. Brief Bioinform, 19 (5), 878-892.
Luo, Y., Zhao, X., Zhou, J., et al. (2017). A network
integration approach for drug-target interaction
prediction and computational drug repositioning from
heterogeneous information. Nature Communications,
8 (1), 573.
Maleki, E. F., Ghadiri, N., Shahreza, M. L., et al. (2020).
DHLP 1&2: Giraph based distributed label
propagation algorithms on heterogeneous drug-related
networks. Expert Systems with Applications, 159.
Mei, J. P., Kwoh, C. K., Yang, P., et al. (2013). Drug-
target interaction prediction by learning from local
information and neighbors. Bioinformatics, 29 (2),
238-245.
Nagamine, N., Shirakawa, T., Minato, Y., et al. (2009).
Integrating statistical predictions and experimental
verifications for enhancing protein-chemical
interaction predictions in virtual screening. PLoS
Computational Biology, 5 (6), e1000397.
Nascimento, A. C., Prudencio, R. B., & Costa, I. G.
(2016). A multiple kernel learning algorithm for drug-
target interaction prediction. BMC Bioinformatics, 17,
46.
Paul, S. M., Mytelka, D. S., Dunwiddie, C. T., et al.
(2010). How to improve R&D productivity: the
pharmaceutical industry's grand challenge. Nature
Reviews Drug Discovery, 9 (3), 203-214.
Pliakos, K., & Vens, C. (2020). Drug-target interaction
prediction with tree-ensemble learning and output
space reconstruction. BMC Bioinformatics, 21 (1), 49.
Sachdev, K., & Gupta, M. K. (2019). A comprehensive
review of feature based methods for drug target
interaction prediction. Journal of Biomedical
Informatics, 93, 103159.
Saint-Antoine, M. M., & Singh, A. (2020). Network
inference in systems biology: recent developments,
challenges, and applications. Current Opinion
Biotechnology, 63, 89-98.